The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A172494 Numbers n with (p,p+2) = ((2*n)^3/2 - 1,(2*n)^3/2 + 1) is a twin prime pair. 7
 1, 3, 87, 195, 243, 297, 408, 495, 522, 528, 573, 600, 798, 885, 903, 957, 1038, 1053, 1110, 1200, 1233, 1293, 1302, 1308, 1368, 1473, 1482, 1578, 1623, 1797, 1953, 2028, 2142, 2238, 2370, 2772, 2868, 2973, 3033, 3393, 3483, 3582, 3777, 3822, 3840, 3912 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS For k > 1: n = a(k) is necessarily a multiple of 3. LINKS Harvey P. Dale, Table of n, a(n) for n = 1..1000 FORMULA 2*a(n) = (2*A172271(n) + 2)^(1/3). - R. J. Mathar, Aug 21 2014 EXAMPLE 3 = (2*1)^3/2 - 1 = prime(2), 3 + 2 = 5 = (2*1)^3/2 + 1, (3,5) is the first twin prime pair => a(1) = 1. 107 = (2*3)^3/2 - 1 = prime(28), 107 + 2 = 109 = (2*3)^3/2 + 1, (107,109) is the 10th twin prime pair => a(2) = 3. MATHEMATICA Select[Range[4000], AllTrue[(2#)^3/2+{1, -1}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 21 2015 *) PROG (PARI) select(n -> isprime((2*n)^3/2-1) && isprime((2*n)^3/2+1), [1..4000]) \\ Satish Bysany, Mar 03 2017 CROSSREFS Cf. A172271, A001359, A061308, A069496, A061308, A119859. Sequence in context: A302947 A326948 A159053 * A279131 A368620 A230670 Adjacent sequences: A172491 A172492 A172493 * A172495 A172496 A172497 KEYWORD nonn AUTHOR Ulrich Krug (leuchtfeuer37(AT)gmx.de), Feb 05 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 04:41 EDT 2024. Contains 372758 sequences. (Running on oeis4.)