The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A172494 Numbers n with (p,p+2) = ((2*n)^3/2 - 1,(2*n)^3/2 + 1) is a twin prime pair. 7
1, 3, 87, 195, 243, 297, 408, 495, 522, 528, 573, 600, 798, 885, 903, 957, 1038, 1053, 1110, 1200, 1233, 1293, 1302, 1308, 1368, 1473, 1482, 1578, 1623, 1797, 1953, 2028, 2142, 2238, 2370, 2772, 2868, 2973, 3033, 3393, 3483, 3582, 3777, 3822, 3840, 3912 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
For k > 1: n = a(k) is necessarily a multiple of 3.
LINKS
FORMULA
2*a(n) = (2*A172271(n) + 2)^(1/3). - R. J. Mathar, Aug 21 2014
EXAMPLE
3 = (2*1)^3/2 - 1 = prime(2), 3 + 2 = 5 = (2*1)^3/2 + 1, (3,5) is the first twin prime pair => a(1) = 1.
107 = (2*3)^3/2 - 1 = prime(28), 107 + 2 = 109 = (2*3)^3/2 + 1, (107,109) is the 10th twin prime pair => a(2) = 3.
MATHEMATICA
Select[Range[4000], AllTrue[(2#)^3/2+{1, -1}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 21 2015 *)
PROG
(PARI)
select(n -> isprime((2*n)^3/2-1) && isprime((2*n)^3/2+1), [1..4000]) \\ Satish Bysany, Mar 03 2017
CROSSREFS
Sequence in context: A302947 A326948 A159053 * A279131 A368620 A230670
KEYWORD
nonn
AUTHOR
Ulrich Krug (leuchtfeuer37(AT)gmx.de), Feb 05 2010
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 04:41 EDT 2024. Contains 372758 sequences. (Running on oeis4.)