login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326948
Number of connected T_0 set-systems on n vertices.
4
1, 1, 3, 86, 31302, 2146841520, 9223371978880250448, 170141183460469231408869283342774399392, 57896044618658097711785492504343953919148780260559635830120038252613826101856
OFFSET
0,3
COMMENTS
The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. The T_0 condition means that the dual is strict (no repeated edges).
LINKS
FORMULA
Logarithmic transform of A059201.
EXAMPLE
The a(3) = 86 set-systems:
{12}{13} {1}{2}{13}{123} {1}{2}{3}{13}{23}
{12}{23} {1}{2}{23}{123} {1}{2}{3}{13}{123}
{13}{23} {1}{3}{12}{13} {1}{2}{3}{23}{123}
{1}{2}{123} {1}{3}{12}{23} {1}{2}{12}{13}{23}
{1}{3}{123} {1}{3}{12}{123} {1}{2}{12}{13}{123}
{1}{12}{13} {1}{3}{13}{23} {1}{2}{12}{23}{123}
{1}{12}{23} {1}{3}{13}{123} {1}{2}{13}{23}{123}
{1}{12}{123} {1}{3}{23}{123} {1}{3}{12}{13}{23}
{1}{13}{23} {1}{12}{13}{23} {1}{3}{12}{13}{123}
{1}{13}{123} {1}{12}{13}{123} {1}{3}{12}{23}{123}
{2}{3}{123} {1}{12}{23}{123} {1}{3}{13}{23}{123}
{2}{12}{13} {1}{13}{23}{123} {1}{12}{13}{23}{123}
{2}{12}{23} {2}{3}{12}{13} {2}{3}{12}{13}{23}
{2}{12}{123} {2}{3}{12}{23} {2}{3}{12}{13}{123}
{2}{13}{23} {2}{3}{12}{123} {2}{3}{12}{23}{123}
{2}{23}{123} {2}{3}{13}{23} {2}{3}{13}{23}{123}
{3}{12}{13} {2}{3}{13}{123} {2}{12}{13}{23}{123}
{3}{12}{23} {2}{3}{23}{123} {3}{12}{13}{23}{123}
{3}{13}{23} {2}{12}{13}{23} {1}{2}{3}{12}{13}{23}
{3}{13}{123} {2}{12}{13}{123} {1}{2}{3}{12}{13}{123}
{3}{23}{123} {2}{12}{23}{123} {1}{2}{3}{12}{23}{123}
{12}{13}{23} {2}{13}{23}{123} {1}{2}{3}{13}{23}{123}
{12}{13}{123} {3}{12}{13}{23} {1}{2}{12}{13}{23}{123}
{12}{23}{123} {3}{12}{13}{123} {1}{3}{12}{13}{23}{123}
{13}{23}{123} {3}{12}{23}{123} {2}{3}{12}{13}{23}{123}
{1}{2}{3}{123} {3}{13}{23}{123} {1}{2}{3}{12}{13}{23}{123}
{1}{2}{12}{13} {12}{13}{23}{123}
{1}{2}{12}{23} {1}{2}{3}{12}{13}
{1}{2}{12}{123} {1}{2}{3}{12}{23}
{1}{2}{13}{23} {1}{2}{3}{12}{123}
MATHEMATICA
dual[eds_]:=Table[First/@Position[eds, x], {x, Union@@eds}];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Sort[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n], {1, n}]], Union@@#==Range[n]&&Length[csm[#]]<=1&&UnsameQ@@dual[#]&]], {n, 0, 3}]
CROSSREFS
The same with covering instead of connected is A059201, with unlabeled version A319637.
The non-T_0 version is A323818 (covering) or A326951 (not-covering).
The non-connected version is A326940, with unlabeled version A326946.
Sequence in context: A185142 A279020 A302947 * A159053 A172494 A279131
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 08 2019
STATUS
approved