login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185142
E.g.f. A(x) = Sum_{n>=0} a(n)*x^(2*n+1)/(2*n+1)! is inverse function to x*cos(x).
2
1, 3, 85, 6727, 1045161, 268614731, 103164046973, 55349799523215, 39541660762919761, 36286594559417097619, 41598050801794414418085, 58257277349451323696625623, 97872074004750264647795154425, 194268677575370080513687519965147, 449782936650769586164505607701592781
OFFSET
0,2
LINKS
FORMULA
a(n) = 2*Sum_{k=1..2*n} binomial(2*n+k,2*n)*(Sum_{j=1..k} ((Sum_{i=0..(j-1)/2)} (j-2*i)^(2*n)*binomial(j,i))*binomial(k,j)*(-1)^(n-j))/2^j))), n>0, a(0)=1.
a(n) = [x^(2*n)/(2*n)!] 1/cos(x)^(2*n+1). - Paul D. Hanna, Jan 23 2012
a(n) = (2*n+1) * A196873(n) for n>=1, where e.g.f. G(x) of A196873 satisfies: G(x*cos(x)) = 1/cos(x). - Paul D. Hanna, Jan 23 2012
a(n) = Sum_{k=1..2*n} (binomial(2*n+k,2*n)*Sum_{i=0..k-1} (i-k)^(2*n)*binomial(2*k,i)*(-1)^(n+k-i)))/2^(k-1), with n>0, a(0)=1. - Vladimir Kruchinin, Oct 08 2012
MATHEMATICA
a[n_] := Sum[ (Binomial[2*n + k, 2*n]*Sum[ (i - k)^(2*n)*Binomial[2*k, i]*(-1)^(n + k - i), {i, 0, k - 1}])/2^(k - 1), {k, 1, 2*n}]; a[0] = 1; Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Feb 21 2013, translated from Maxima *)
PROG
(Maxima) a(n):=if n=0 then 1 else 2*sum(binomial(2*n+k, 2*n)*sum(((sum((j-2*i)^(2*n)*binomial(j, i), i, 0, (j-1)/2))*binomial(k, j)*(-1)^(n-j))/2^j, j, 1, k), k, 1, 2*n)/(2*n+1)!;
(PARI) {a(n)=if(n==0, 1, 2*sum(k=1, 2*n, binomial(2*n+k, 2*n)*sum(j=1, k, sum(i=0, floor((j-1)/2), (j-2*i)^(2*n)*binomial(j, i))*binomial(k, j)*(-1)^(n-j)/2^j)))}
(PARI) {a(n)=(2*n)!*polcoeff(1/cos(x+x*O(x^(2*n+1)))^(2*n+1), 2*n)}
(Maxima) a(n):=if n=0 then 1 else (sum((binomial(2*n+k, 2*n)*sum((i-k)^(2*n)*binomial(2*k, i)*(-1)^(n+k-i), i, 0, k-1))/2^(k-1), k, 1, 2*n));
CROSSREFS
Cf. A196873.
Sequence in context: A156879 A120264 A292830 * A279020 A302947 A326948
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Jan 23 2012
STATUS
approved