The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002907 High temperature series in v = tanh(J/kT) for residual correlation function (correction to susceptibility) for the spin-1/2 Ising model on square lattice. (Formerly M0391 N0149) 1
 2, 2, 20, 38, 146, 368, 1070, 2824, 7680, 19996, 53024, 136350, 355254, 906254, 2331416, 5909810, 15067236, 37992680, 96210436, 241564514, 608469654, 1522388638, 3818281784, 9525139886, 23806217352, 59237754234, 147621207142, 366533832540, 911151508282 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Previous name was: Susceptibility for square lattice. REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Table of n, a(n) for n=0..28. M. F. Sykes and M. E. Fisher, Antiferromagnetic susceptibility of the plane square and honeycomb Ising lattices, Physica, 28 (1962), 919-938. FORMULA G.f.: ((1-3*v)^2*xi(v) - (1-v)^2 + 2*v*u(v)) / (8*v^7*(1+v)^2), where xi(v) is the g.f. of A002906 and u(v) is the g.f. of A002908 (odd powers only!); the actual "residual correlation function" is the numerator of this expression [Sykes & Fisher]. - Andrey Zabolotskiy, Feb 28 2021 CROSSREFS Cf. A002906, A002908. Sequence in context: A322898 A009340 A053593 * A350466 A184717 A134046 Adjacent sequences: A002904 A002905 A002906 * A002908 A002909 A002910 KEYWORD nonn AUTHOR N. J. A. Sloane EXTENSIONS New name and terms a(10) and beyond from Andrey Zabolotskiy, Feb 28 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 14 21:48 EDT 2024. Contains 375929 sequences. (Running on oeis4.)