login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134046
G.f. A(x) satisfies: [x^n] A(x)^(2^n) = 4^n for n>=0.
2
1, 2, -2, -20, -394, -72756, -38636660, -62621451464, -320115036508314, -5370757579794299764, -307243789286348665328060, -61750332256061511777753774808, -44549932891827456895274618101297860, -117151486172958209318246658698308578710856
OFFSET
0,2
FORMULA
A134047(n) = [x^n] A(x)^( 2^(n+1) ) / 4^n.
G.f. A(x) satisfies: 1/(1-4x) = Sum_{n>=0} log( A(2^n*x) )^n / n! = 1 + log(A(2x)) + log(A(4x)^2/2! + log(A(8x))^3/3! +... - Paul D. Hanna, Jan 05 2008
EXAMPLE
To illustrate the property [x^n] A(x)^(2^n) = 4^n,
put the g.f. A(x) to powers 2^n, n=0..6, as follows:
A(x)^1 = (1) + 2x - 2x^2 - 20x^3 - 394x^4 - 72756x^5 - 38636660x^6 +...;
A(x)^2 = 1 + (4)x + 0x^2 - 48x^3 - 864x^4 -147008x^5 - 77562368x^6 +...;
A(x)^4 = 1 + 8x +(16)x^2 - 96x^3 -2112x^4 -300928x^5 -156298496x^6 +...;
A(x)^8 = 1 +16x + 96x^2 +(64)x^3 -5504x^4 -638720x^5 -317470208x^6 +...;
A(x)^16= 1 +32x +448x^2 +3200x^3+(256)x^4-1441280x^5 -656432128x^6 +...;
A(x)^32= 1 +64x+1920x^2+35072x^3+406016x^4+(1024)x^5-1394636800x^6 +...;
A(x)^64= 1+128x+7936x^2+315904x^3+8987648x^4+186648576x^5+(4096)x^6+...;
where coefficients enclosed in parenthesis are successive powers of 4.
PROG
(PARI) {a(n)=local(A=[]); for(i=0, n, A=concat(A, 0); A[i+1]=(4^i - Vec(Ser(A)^(2^i))[i+1])/2^i); A[n+1]}
CROSSREFS
Cf. A134047.
Sequence in context: A002907 A350466 A184717 * A081687 A082811 A377251
KEYWORD
sign
AUTHOR
Paul D. Hanna, Oct 25 2007
STATUS
approved