Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #3 Mar 30 2012 18:37:05
%S 1,2,-2,-20,-394,-72756,-38636660,-62621451464,-320115036508314,
%T -5370757579794299764,-307243789286348665328060,
%U -61750332256061511777753774808,-44549932891827456895274618101297860,-117151486172958209318246658698308578710856
%N G.f. A(x) satisfies: [x^n] A(x)^(2^n) = 4^n for n>=0.
%F A134047(n) = [x^n] A(x)^( 2^(n+1) ) / 4^n.
%F G.f. A(x) satisfies: 1/(1-4x) = Sum_{n>=0} log( A(2^n*x) )^n / n! = 1 + log(A(2x)) + log(A(4x)^2/2! + log(A(8x))^3/3! +... - _Paul D. Hanna_, Jan 05 2008
%e To illustrate the property [x^n] A(x)^(2^n) = 4^n,
%e put the g.f. A(x) to powers 2^n, n=0..6, as follows:
%e A(x)^1 = (1) + 2x - 2x^2 - 20x^3 - 394x^4 - 72756x^5 - 38636660x^6 +...;
%e A(x)^2 = 1 + (4)x + 0x^2 - 48x^3 - 864x^4 -147008x^5 - 77562368x^6 +...;
%e A(x)^4 = 1 + 8x +(16)x^2 - 96x^3 -2112x^4 -300928x^5 -156298496x^6 +...;
%e A(x)^8 = 1 +16x + 96x^2 +(64)x^3 -5504x^4 -638720x^5 -317470208x^6 +...;
%e A(x)^16= 1 +32x +448x^2 +3200x^3+(256)x^4-1441280x^5 -656432128x^6 +...;
%e A(x)^32= 1 +64x+1920x^2+35072x^3+406016x^4+(1024)x^5-1394636800x^6 +...;
%e A(x)^64= 1+128x+7936x^2+315904x^3+8987648x^4+186648576x^5+(4096)x^6+...;
%e where coefficients enclosed in parenthesis are successive powers of 4.
%o (PARI) {a(n)=local(A=[]);for(i=0,n, A=concat(A,0);A[i+1]=(4^i - Vec(Ser(A)^(2^i))[i+1])/2^i);A[n+1]}
%Y Cf. A134047.
%K sign
%O 0,2
%A _Paul D. Hanna_, Oct 25 2007