login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101923
Expansion of 2 * arccot(cos(x)).
3
1, 2, 1, -148, -3719, -20098, 5055961, 403644152, 7831409041, -2707151879398, -472143935754479, -22085804322342748, 9362259685093715401, 2995219209329323622102, 274269338931958691728681, -132963342779629343323496848, -70698673853383423350187244639
OFFSET
1,2
COMMENTS
Odd coefficients are zero.
LINKS
FORMULA
2*acot(cos(x)) = Pi/2 + x^2/2! + 2*x^4/4! + x^6/6! - 148*x^8/8! - 3719*x^10/10! -...
2*atan(cos(x)) = Pi/2 - x^2/2! - 2*x^4/4! - x^6/6! + 148*x^8/8! + 3719*x^10/10! +...
G.f. sin(x)/(1 - 1/2*sin(x)^2) = x + 2*x^3/3! + x^5/5! - 148*x^7/7! - ... - Peter Bala, Feb 06 2017
MAPLE
with(gfun):
series(sin(x)/(1-(1/2)*sin(x)^2), x, 35):
L := seriestolist(%):
seq(op(2*i, L)*(2*i-1)!, i = 1..floor((1/2)*nops(L)));
# Peter Bala, Feb 06 2017
MATHEMATICA
With[{nn=40}, Take[CoefficientList[Series[2ArcCot[Cos[x]], {x, 0, nn}], x] Range[0, nn]!, {3, -1, 2}]] (* Harvey P. Dale, Nov 17 2014 *) (* adapted by Vincenzo Librandi, Feb 07 2017 *)
CROSSREFS
Cf. other sequences with a g.f. of the form sin(x)/(1 - k*sin^2(x)): A012494 (k=-1), A000364 (k=1), A000464 (k=2), A156138 (k=3), A002439 (k=4).
Sequence in context: A081708 A358858 A012004 * A010788 A258819 A337051
KEYWORD
sign,easy
AUTHOR
Ralf Stephan, Dec 27 2004
EXTENSIONS
More terms from Harvey P. Dale, Nov 17 2014
Signs of the data entries corrected by Peter Bala, Feb 06 2017
STATUS
approved