login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156138
Q_{2n+1}(sqrt(2))/sqrt(2) (see A104035).
3
1, 17, 901, 99917, 18991081, 5514615017, 2270974911661, 1258937450889317, 903952433274722641, 816101554527859690817, 904827968753139590344021, 1208617989532834039606507517, 1914312457105234828011498655801, 3547500444096776665586928259547417, 7604155838367549221056955383942297981
OFFSET
0,2
LINKS
FORMULA
E.g.f.: sin(x)/(1 - 3*sin(x)^2) = x + 17*x^3/3! + 901*x^5/5! + 99917*x^7/7! + ... - Peter Bala, Feb 06 2017
EXAMPLE
G.f. = 1 + 17*x + 901*x^2 + 99917*x^3 + 18991081*x^4 + 5514615017*x^5 + ... - Michael Somos, Aug 19 2018
MAPLE
with(gfun):
series(sin(x)/(1-3*sin(x)^2), x, 30):
L := seriestolist(%):
seq(op(2*i, L)*(2*i-1)!, i = 1..floor((1/2)*nops(L)));
# Peter Bala, Feb 06 2017
MATHEMATICA
With[{nmax = 50}, CoefficientList[Series[Sin[x]/(1 - 3*Sin[x]^2), {x, 0, nmax}], x]*Range[0, nmax]!][[2 ;; ;; 2]] (* G. C. Greubel, Aug 17 2018 *)
PROG
(PARI) x='x+O('x^50); v=Vec(serlaplace(sin(x)/(1 - 3*sin(x)^2))); vector((#v-1)\2 , n, v[2*n-1]) \\ G. C. Greubel, Aug 17 2018
CROSSREFS
Cf. other sequences with a g.f. of the form sin(x)/(1 - k*sin^2(x)): A101923 (k=1/2), A000364 (k=1), A000464 (k=2), A002439 (k=4).
Sequence in context: A124235 A218660 A086265 * A229261 A373861 A196873
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 06 2009
STATUS
approved