login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The summarize Lucas sequence: summarize the previous two terms, start with 1, 3.
4

%I #17 Jun 18 2022 13:32:18

%S 1,3,1311,2331,331241,14432231,34433241,54533231,2544632221,

%T 163534435221,263544436231,363554634231,463554733221,17364544733221,

%U 37263554634231,37363554734231,37364544933221,1937263554933221,3927263544835231,391827264534836231,293827363544836231

%N The summarize Lucas sequence: summarize the previous two terms, start with 1, 3.

%C After the 26th term the sequence goes into a cycle of 46 terms.

%C "Summarize" uses here method C = A244112: in order of decreasing digit value.

%H Alois P. Heinz, <a href="/A036066/b036066.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Sa#swys">Index to sequences related to say what you see</a>

%F a(n+1) = A244112(concat(a(n),a(n-1))). - _M. F. Hasler_, Feb 25 2018

%p a:= proc(n) option remember; `if`(n<2, 2*n+1, (p-> parse(cat(seq((c->

%p `if`(c=0, [][], [c, 9-i][]))(coeff(p, x, 9-i)), i=0..9))))(

%p add(x^i, i=map(x-> convert(x, base, 10)[], [a(n-1),a(n-2)]))))

%p end:

%p seq(a(n), n=0..20); # _Alois P. Heinz_, Jun 18 2022

%t a[0] = 1; a[1] = 3; a[n_] := a[n] = FromDigits @ Flatten @ Reverse @ Select[ Transpose @ { DigitCount[a[n-1]] + DigitCount[a[n-2]], Append[ Range[9], 0]}, #[[1]] > 0 &];

%t Table[a[n], {n, 0, 17}] (* _Jean-François Alcover_, Dec 30 2017 *)

%o (PARI) {a=[1,3]; for(n=1,50,a=concat(a,A244112(eval(Str(a[n],a[n+1]))))); a} \\ _M. F. Hasler_, Feb 25 2018

%Y Cf. A036059.

%Y Cf. A244112 (summarizing as used here: by decreasing digit value), A047842 (alternative summarizing method: by increasing digit value), A047843 (another method: don't omit missing digits between smallest and largest one).

%K base,easy,nice,nonn

%O 0,2

%A _Floor van Lamoen_