login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028566
a(n) = n*(n+8).
23
0, 9, 20, 33, 48, 65, 84, 105, 128, 153, 180, 209, 240, 273, 308, 345, 384, 425, 468, 513, 560, 609, 660, 713, 768, 825, 884, 945, 1008, 1073, 1140, 1209, 1280, 1353, 1428, 1505, 1584, 1665, 1748, 1833, 1920, 2009, 2100, 2193, 2288, 2385
OFFSET
0,2
COMMENTS
a(m) where m is a positive integer are the only positive integer values of t for which the Binet-de Moivre Formula of the recurrence b(n) = 8*b(n-1) + t*b(n-2) with b(0) = 0 and b(1) = 1 has a root which is a square. In particular, sqrt(8^2 + 4*t) is a positive integer since 8^2 + 4*t = 8^2 + 4*a(m) = (2*m + 8)^2. Thus, the characteristics roots are r1 = 8 + m and r2 = -m. - Felix P. Muga II, Mar 28 2014
FORMULA
a(n) = (n+4)^2 - 4^2 = n*(n+8), n >= 0.
G.f.: x*(9 - 7*x)/(1 - x)^3.
a(n) = 2*n + a(n-1) + 7. - Vincenzo Librandi, Aug 05 2010
Sum_{n >= 1} 1/a(n) = 761/2240 = 0.3397321... - R. J. Mathar, Mar 22 2011
Sum_{n>=1} (-1)^(n+1)/a(n) = 533/6720. - Amiram Eldar, Jan 15 2021
E.g.f.: x*(9 + x)*exp(x). - G. C. Greubel, Jul 31 2022
From Amiram Eldar, Feb 12 2024: (Start)
Product_{n>=1} (1 - 1/a(n)) = 315*sin(sqrt(17)*Pi)/(13*sqrt(17)*Pi).
Product_{n>=1} (1 + 1/a(n)) = -32*sqrt(15)*sin(sqrt(15)*Pi)/(11*Pi). (End)
MATHEMATICA
Table[n (n+8), {n, 0, 50}] (* Bruno Berselli, Apr 06 2014 *)
PROG
(PARI) a(n)=n*(n+8)
(Sage) [n*(n+8) for n in [0..50]] # Bruno Berselli, Apr 06 2014
(Scala) (0 to 49).map { n: Int => n * n + 8 * n } // Alonso del Arte, Nov 10 2019
(Magma) [n*(n+8): n in [0..50]]; // G. C. Greubel, Jul 31 2022
CROSSREFS
a(n - 4), n >= 5, fourth column (used for the Brackett series of the hydrogen atom) of triangle A120070.
Sequence in context: A322433 A017497 A059108 * A147479 A146680 A143704
KEYWORD
nonn,easy
STATUS
approved