The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A120070 Triangle of numbers used to compute the frequencies of the spectral lines of the hydrogen atom. 44
 3, 8, 5, 15, 12, 7, 24, 21, 16, 9, 35, 32, 27, 20, 11, 48, 45, 40, 33, 24, 13, 63, 60, 55, 48, 39, 28, 15, 80, 77, 72, 65, 56, 45, 32, 17, 99, 96, 91, 84, 75, 64, 51, 36, 19, 120, 117, 112, 105, 96, 85, 72, 57, 40, 21 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 COMMENTS The rationals r(m,n):=a(m,n)/(m^2*n^2), for m-1 >= n, else 0, are used to compute the frequencies of the spectral lines of the H-atom according to quantum theory: nu(m,n) = r(m,n)*c*R' with c*R'=3.287*10^15 s^(-1) an approximation for the Rydberg frequency. R' indicates, that the correction factor 1/(1+m_e/m_p), approximately 0.9995, with the masses for the electron and proton, has been used for the Rydberg constant R_infinity. c:=299792458 m/s is, per definition, the velocity of light in vacuo (see A003678). In order to compute the wave length of the spectral lines approximately one uses the reciprocal rationals: lambda(m,n):= c/nu(m,n) = (1/r(m,n))*91.1961 nm. 1 nm = 10^{-9} m. For the corresponding energies one uses approximately E(m,n) = r(m,n)*13.599 eV (electron Volts). The author was inspired by Dewdney's book to compile this table and related ones. For the approximate frequencies, energies and wavelengths of the first members of the Lyman (n=1, m>=2), Balmer (n=2, m>=3), Paschen (n=3, m>=4), Brackett (n=4, m>=5) and Pfund (n=5, m>=6) series see the W. Lang link under A120072. Frenicle wrote this as a(n+1) = A140978(n) - A133819(n-1). - Paul Curtz, Aug 19 2008 This triangle also has an interpretation related to particle spin. For proper offset such that T(0,0) = 3, then, where h-bar = h/(2*Pi) = A003676/A019692 (= The Dirac constant, also known as Planck's reduced constant) and Spin(n/2) = h-bar/2*sqrt(n(n+2)), it follows that: h-bar/2*sqrt(T(r,k)) = h-bar/2*sqrt(T(r,0) - T(k-1,0)) = sqrt((Spin((r+1)/2))^2 - (Spin(k/2))^2). For example, for r = k = 4, then h-bar/2*sqrt(11) = h-bar/2*sqrt(T(4,4)) = h-bar/2*sqrt(T(4,0) - T(3,0)) = sqrt(h-bar^2/4*T(4,0) - h-bar^2/4*T(3,0)) = sqrt(h-bar^2/4*35 - h-bar^2/4*24) = sqrt((Spin((4+1)/2))^2 - (Spin(4/2))^2); 35 = 5*(5+2) & 24 = 4*(4+2). - Raphie Frank, Dec 30 2012 REFERENCES A. K. Dewdney, Reise in das Innere der Mathematik, BirkhĂ¤user, Basel, 2000, pp. 148-154; engl.: A Mathematical Mystery Tour, John Wiley & Sons, N.Y., 1999. LINKS Stanislav Sykora, Table of n, a(n) for n = 2..79801 W. Lang: First ten rows and more. M. de Frenicle, Methode pour trouver la solutions des problemes par les exclusions, in: Divers ouvrages des mathematiques et de physique par messieurs de l'academie royale des sciences, (1693) pp 1-44, page 11. Wikipedia, Spin (physics) Wikipedia, Hydrogen spectral series FORMULA a(m,n) = m^2 - n^2 for m-1 >= n, otherwise 0. G.f. for column n=1,2,...: x^(n+1)*((2*n+1)- (2*n-1)*x)/(1-x)^3. G.f. for rationals r(m,n), n=1,2,...,10 see W. Lang link. T(r,k) = T(r,0) - T(k-1,0), T(0,0) = 3. - Raphie Frank, Dec 27 2012 EXAMPLE Triangle begins   [ 3];   [ 8, 5];   [15, 12,  7];   [24, 21, 16,  9];   [35, 32, 27, 20, 11];   ... MATHEMATICA ColumnForm[Table[n^2 - k^2, {n, 2, 13}, {k, n - 1}], Center] (* Alonso del Arte, Oct 26 2011 *) PROG (PARI) nmax=400; a=vector(1+nmax*(nmax-1)\2); idx=1; for(n=2, nmax, for(k=1, n-1, a[idx]=n*n-k*k; idx++)) \\ Stanislav Sykora, Feb 17 2014 (PARI) T(n, k)=n^2-k^2; for (n=1, 10, for(k=1, n-1, print1(T(n, k), ", "))); \\ Joerg Arndt, Feb 23 2014 CROSSREFS Row sums give A016061(n-1), n>=2. Cf. A120072/A120073 numerator and denominator tables for rationals r(m, n). Sequence in context: A050093 A120072 A166492 * A143753 A121164 A086872 Adjacent sequences:  A120067 A120068 A120069 * A120071 A120072 A120073 KEYWORD nonn,easy,tabl AUTHOR Wolfdieter Lang, Jul 20 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 15:39 EDT 2021. Contains 343154 sequences. (Running on oeis4.)