login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140978
Repeat (n+1)^2 n times.
5
4, 9, 9, 16, 16, 16, 25, 25, 25, 25, 36, 36, 36, 36, 36, 49, 49, 49, 49, 49, 49, 64, 64, 64, 64, 64, 64, 64, 81, 81, 81, 81, 81, 81, 81, 81, 100, 100, 100, 100, 100, 100, 100, 100, 100, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121
OFFSET
1,1
COMMENTS
See A093995.
Frenicle writes the entries in the form a(n) = A055096(n)-A133819(n), with the flattened index view of A133819: 4=5-1, 9=10-1, 9=13-4, 16=17-1, 16=20-4, 16=25-9 etc.
Also triangle T(n, k) = (n+1)^2, 1<=k<=n. - Michel Marcus, Feb 03 2013
LINKS
M. de Frenicle, Methode pour trouver la solutions des problemes par les exclusions, in: Divers ouvrages des mathematiques et de physique par messieurs de l'academie royale des sciences, (1693) pp 1-44, table page 11.
FORMULA
a(n)=(A003057(n+1))^2. - R. J. Mathar, Aug 25 2008
MATHEMATICA
Table[PadRight[{}, n, (n+1)^2], {n, 10}]//Flatten (* Harvey P. Dale, Oct 10 2019 *)
PROG
(Haskell)
a140978 n k = a140978_tabl !! (n-1) !! (k-1)
a140978_row n = a140978_tabl !! (n-1)
a140978_tabl = map snd $ iterate
(\(i, xs@(x:_)) -> (i + 2, map (+ i) (x:xs))) (5, [4])
-- Reinhard Zumkeller, Mar 23 2013
(Python)
from math import isqrt
def A140978(n): return ((m:=isqrt(k:=n<<1))+(k>m*(m+1))+1)**2 # Chai Wah Wu, Nov 07 2024
CROSSREFS
Cf. A000290.
Sequence in context: A100555 A250126 A186887 * A106410 A065737 A014719
KEYWORD
nonn,easy,tabl
AUTHOR
Paul Curtz, Aug 17 2008
STATUS
approved