login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140979
a(n) = floor(2*phi*floor(n*phi)) where phi = A001622.
1
3, 9, 12, 19, 25, 29, 35, 38, 45, 51, 55, 61, 67, 71, 77, 80, 87, 93, 97, 103, 106, 113, 119, 122, 129, 135, 139, 145, 148, 155, 161, 165, 171, 177, 181, 187, 190, 197, 203, 207, 213, 216, 223, 229, 232, 239, 245, 249, 255, 258, 265, 271, 275, 281, 284, 291, 297, 300, 307, 313, 317, 323, 326, 333, 339, 343, 349, 355
OFFSET
1,1
LINKS
Shiri Artstein-Avidan, Aviezri S. Fraenkel and Vera T. Sos, A two-parameter family of an extension of Beatty sequences, Discr. Math. 308 (2008), 4578-4588.
Shiri Artstein-Avidan, Aviezri S. Fraenkel and Vera T. Sos, A two-parameter family of an extension of Beatty sequences, preprint.
MAPLE
Digits := 200: a001622:= (1+sqrt(5))/2 : A140979 := proc(n) global a001622 ; floor(2*a001622*floor(n*a001622)) ; end: for n from 1 to 100 do printf("%d, ", A140979(n)); end: # R. J. Mathar, Sep 05 2008
MATHEMATICA
Table[Floor[2*GoldenRatio*Floor[n*GoldenRatio]], {n, 70}] (* Harvey P. Dale, Feb 25 2018 *)
PROG
(Python)
from math import isqrt
def A140979(n): return (m:=n+isqrt(5*n**2)&-2)+isqrt(5*m**2)>>1 # Chai Wah Wu, Aug 29 2022
CROSSREFS
Sequence in context: A356220 A309394 A285564 * A096726 A272027 A310323
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Sep 04 2008
EXTENSIONS
Definition corrected and more terms from R. J. Mathar, Sep 05 2008
STATUS
approved