login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140982
If (a_n) is a sequence then let L(a_n)=(b_n) where b_n = a_n^2 - a_{n-1} a_{n+1}. The given sequence is the rows of the triangle obtained by computing L^2(binomial(n,k)).
0
1, 3, 1, 6, 16, 1, 10, 100, 50, 1, 15, 400, 750, 120, 1, 21, 1225, 6125, 3675, 245, 1, 28, 3136, 34300, 54880, 13720, 448, 1, 36, 7056, 148176, 518616, 345744, 42336, 756, 1, 45, 14400, 529200, 3556224, 5186160, 1693440, 113400, 1200, 1, 55, 27225, 1633500
OFFSET
3,2
COMMENTS
L(binomial(n,k)) gives the Narayana numbers, A001263.
LINKS
Peter R. W. McNamara and Bruce E. Sagan, Infinite log-concavity: developments and conjectures, arXiv:0808.1065 [math.CO], 2008-2009.
Peter R. W. McNamara and Bruce E. Sagan, Infinite log-concavity: developments and conjectures, Advances in Applied Mathematics, 44 (1) (2010), 1-15.
FORMULA
a(n,k) = binomial(n,k)^2 * binomial(n,k-1) * binomial(n,k-2) / (n*binomial(n,2)).
MATHEMATICA
a[n_, k_] := 2 * Binomial[n, k]^2 * Binomial[n, k - 1] * Binomial[n, k - 2] / ((n - 1) n^2); Table[ a[n, k], {n, 2, 11}, {k, 2, n}] // Flatten (* Robert G. Wilson v, Aug 03 2008 *)
CROSSREFS
Cf. A001263.
Sequence in context: A049966 A187120 A350610 * A100232 A221937 A333652
KEYWORD
nonn,tabl
AUTHOR
Bruce E. Sagan, Jul 28 2008
EXTENSIONS
More terms from Robert G. Wilson v, Aug 03 2008
STATUS
approved