login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A333652
Triangle T(n,k), n >= 2, 0 <= k <= floor(n^2/2)-n, read by rows, where T(n,k) is the number of 2*(k+n)-cycles in the n X n grid graph which pass through NW and SW corners.
4
1, 1, 3, 1, 6, 17, 17, 6, 1, 10, 45, 167, 404, 570, 460, 186, 1, 15, 100, 506, 2164, 7726, 20483, 39401, 56015, 57632, 37450, 10340, 1072, 1, 21, 196, 1316, 7066, 33983, 147377, 546400, 1656592, 4099732, 8394433, 14227675, 19443270, 20239262, 14767415, 7007270, 1926990, 230440
OFFSET
2,3
LINKS
Seiichi Manyama, Rows n = 2..9, flattened
FORMULA
T(n,0) = 1.
T(n,1) = A000217(n-1) for n > 2.
EXAMPLE
T(3,0) = 1;
+--*
| |
* *
| |
+--*
T(3,1) = 3;
+--*--* +--*--* +--*
| | | | | |
* * * *--* * *--*
| | | | | |
+--*--* +--* +--*--*
Triangle starts:
====================================================================
n\k| 0 1 2 3 4 ... 7 ... 12 ... 17 ... 24
---|----------------------------------------------------------------
2 | 1;
3 | 1, 3;
4 | 1, 6, 17, 17, 6;
5 | 1, 10, 45, 167, 404, ... , 186;
6 | 1, 15, 100, 506, 2164, .......... , 1072;
7 | 1, 21, 196, 1316, 7066, .................. , 230440;
8 | 1, 28, 350, 3038, 20317, ............................ , 4638576;
PROG
(Python)
# Using graphillion
from graphillion import GraphSet
import graphillion.tutorial as tl
def A333652(n):
universe = tl.grid(n - 1, n - 1)
GraphSet.set_universe(universe)
cycles = GraphSet.cycles().including(1).including(n)
return [cycles.len(2 * k).len() for k in range(n, n * n // 2 + 1)]
print([i for n in range(2, 8) for i in A333652(n)])
CROSSREFS
Row sums give A333247.
Sequence in context: A140982 A100232 A221937 * A189735 A221693 A271969
KEYWORD
nonn,tabf
AUTHOR
Seiichi Manyama, Apr 01 2020
STATUS
approved