login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302337
Triangle read by rows: T(n,k) is the number of 2k-cycles in the n X n grid graph (2 <= k <= floor(n^2/2), n >= 2).
8
1, 4, 4, 5, 9, 12, 26, 52, 76, 32, 6, 16, 24, 61, 164, 446, 1100, 2102, 2436, 1874, 900, 226, 25, 40, 110, 332, 1070, 3504, 11144, 32172, 77874, 146680, 217470, 255156, 233786, 158652, 69544, 13732, 1072, 36, 60, 173, 556, 1942, 7092, 26424, 97624, 346428, 1136164, 3313812, 8342388, 18064642, 33777148, 54661008, 76165128, 89790912, 86547168, 64626638, 34785284, 12527632, 2677024, 255088
OFFSET
2,2
LINKS
Seiichi Manyama, Rows n = 2..9, flattened
Eric Weisstein's World of Mathematics, Graph Cycle
Eric Weisstein's World of Mathematics, Grid Graph
FORMULA
Row sums equal A140517(n).
Length of row n equals A047838(n) = floor(n^2/2) - 1.
T(n,2) = 1 - 2*n + n^2 = (n-1)^2.
T(n,3) = 4 - 6*n + 2*n^2 = A046092(n-2).
T(n,4) = 26 - 28*n + 7*n^2 for n > 2.
T(n,5) = 164 - 140*n + 28*n^2 for n > 3.
T(n,6) = 1046 - 740*n + 124*n^2 for n > 4.
T(n,k) = A302335(k) - A302336(k)*n + A002931(k)*n^2 for n > k-2.
T(n,floor(n^2/2)) = A301648(n).
T(n,n^2/2) = A003763(n) for n even.
EXAMPLE
Triangle begins:
1;
4, 4, 5;
9, 12, 26, 52, 76, 32, 6;
16, 24, 61, 164, 446, 1100, 2102, 2436, 1874, 900, 226;
...
So for example, the 3 X 3 grid graph has 4 4-cycles, 4 6-cycles, and 5 8-cycles.
MATHEMATICA
Flatten[Table[Tally[Length /@ FindCycle[GridGraph[{n, n}], Infinity, All]][[All, 2]], {n, 6}]] (* Eric W. Weisstein, Mar 26 2021 *)
PROG
(Python)
# Using graphillion
from graphillion import GraphSet
import graphillion.tutorial as tl
def A302337(n):
universe = tl.grid(n - 1, n - 1)
GraphSet.set_universe(universe)
cycles = GraphSet.cycles()
return [cycles.len(2 * k).len() for k in range(2, n * n // 2 + 1)]
print([i for n in range(2, 8) for i in A302337(n)]) # Seiichi Manyama, Mar 29 2020
CROSSREFS
Cf. A003763 (number of Hamiltonian cycles in 2n X 2n grid graph).
Cf. A140517 (number of cycles).
Cf. A301648 (number of longest cycles).
Sequence in context: A155693 A160705 A107851 * A098821 A363322 A374754
KEYWORD
nonn,tabf
AUTHOR
Eric W. Weisstein, Apr 05 2018
STATUS
approved