login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160705
Hankel transform of A052702.
2
0, 0, 0, 0, 1, 1, -1, -4, -4, 5, 9, 9, -14, -16, -16, 30, 25, 25, -55, -36, -36, 91, 49, 49, -140, -64, -64, 204, 81, 81, -285, -100, -100, 385, 121, 121, -506, -144, -144, 650, 169, 169, -819, -196, -196, 1015, 225, 225, -1240, -256, -256
OFFSET
0,8
COMMENTS
a(n+5) is the Hankel transform of A052702(n+4).
LINKS
FORMULA
G.f.: x^4*(1-x)*(1+x+x^2)*(x^4+x^3-x^2+x+1)/( (1+x)^4*(x^2-x+1)^4 ).
a(n) = -4*a(n-3) -6*a(n-6) -4*a(n-9) -a(n-12).
MATHEMATICA
LinearRecurrence[{0, 0, -4, 0, 0, -6, 0, 0, -4, 0, 0, -1}, {0, 0, 0, 0, 1, 1, -1, -4, -4, 5, 9, 9}, 50] (* G. C. Greubel, May 02 2018 *)
PROG
(PARI) x='x+O('x^50); concat([0, 0, 0, 0], Vec(x^4*(1-x)*(1+x+x^2)*(x^4+x^3-x^2+x+1)/( (1+x)^4*(x^2-x+1)^4 ))) \\ G. C. Greubel, May 02 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); [0, 0, 0, 0] cat Coefficients(R!(x^4*(1-x)*(1+x+x^2)*(x^4+x^3-x^2+x+1)/( (1+x)^4*(x^2-x+1)^4 ))); // G. C. Greubel, May 02 2018
CROSSREFS
Sequence in context: A214070 A096641 A155693 * A107851 A302337 A098821
KEYWORD
easy,sign
AUTHOR
Paul Barry, May 24 2009
STATUS
approved