login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Hankel transform of A052702.
2

%I #10 Sep 08 2022 08:45:45

%S 0,0,0,0,1,1,-1,-4,-4,5,9,9,-14,-16,-16,30,25,25,-55,-36,-36,91,49,49,

%T -140,-64,-64,204,81,81,-285,-100,-100,385,121,121,-506,-144,-144,650,

%U 169,169,-819,-196,-196,1015,225,225,-1240,-256,-256

%N Hankel transform of A052702.

%C a(n+5) is the Hankel transform of A052702(n+4).

%H G. C. Greubel, <a href="/A160705/b160705.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,-4,0,0,-6,0,0,-4,0,0,-1).

%F G.f.: x^4*(1-x)*(1+x+x^2)*(x^4+x^3-x^2+x+1)/( (1+x)^4*(x^2-x+1)^4 ).

%F a(n) = -4*a(n-3) -6*a(n-6) -4*a(n-9) -a(n-12).

%t LinearRecurrence[{0,0,-4,0,0,-6,0,0,-4,0,0,-1}, {0,0,0,0,1,1,-1,-4,-4,5,9,9}, 50] (* _G. C. Greubel_, May 02 2018 *)

%o (PARI) x='x+O('x^50); concat([0,0,0,0], Vec(x^4*(1-x)*(1+x+x^2)*(x^4+x^3-x^2+x+1)/( (1+x)^4*(x^2-x+1)^4 ))) \\ _G. C. Greubel_, May 02 2018

%o (Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); [0,0,0,0] cat Coefficients(R!(x^4*(1-x)*(1+x+x^2)*(x^4+x^3-x^2+x+1)/( (1+x)^4*(x^2-x+1)^4 ))); // _G. C. Greubel_, May 02 2018

%K easy,sign

%O 0,8

%A _Paul Barry_, May 24 2009