OFFSET
2,1
COMMENTS
Frequencies or energies of the spectral lines of the hydrogen (H) atom are given, according to quantum theory, by r(m,n)*3.287*PHz (1 Peta Hertz= 10^15 s^{-1}) or r(m,n)*13.599 eV (electron Volts), respectively. The wave lengths are lambda(m,n) = (1/r(m,n))* 91.196 nm (all decimals rounded). See the W. Lang link for more details.
The spectral series for n=1,2,...,7, m>=n+1, are named after Lyman, Balmer, Paschen, Brackett, Pfund, Humphreys, Hansen-Strong, respectively.
The corresponding denominator triangle is A120073.
LINKS
G. C. Greubel, Rows n = 2..50 of the triangle, flattened
Wolfdieter Lang, First ten rows, rationals and more.
T. Lyman, The Spectrum of Hydrogen in the Region of Extremely Short Wave-Lengths, The Astrophysical Journal, 23 (April 1906), 181-210. - Paul Curtz, May 30 2017
FORMULA
a(m,n) = numerator(r(m,n)) with r(m,n) = 1/n^2 - 1/m^2, m>=2, n=1..m-1.
The g.f.s for the columns n=1,..,10 of triangle r(m,n) = a(m, n) / A120073(m, n), m >= 2, 1 <= n <= m-1, are given in the W. Lang link.
EXAMPLE
For the rational triangle see W. Lang link.
Numerator triangle begins as:
3;
8, 5;
15, 3, 7;
24, 21, 16, 9;
35, 2, 1, 5, 11;
48, 45, 40, 33, 24, 13;
63, 15, 55, 3, 39, 7, 15;
80, 77, 8, 65, 56, 5, 32, 17;
99, 6, 91, 21, 3, 4, 51, 9, 19;
MATHEMATICA
Table[1/n^2 - 1/m^2, {m, 2, 12}, {n, m-1}]//Flatten//Numerator (* Jean-François Alcover, Sep 16 2013 *)
PROG
(Magma) [Numerator(1/k^2 - 1/n^2): k in [1..n-1], n in [2..18]]; // G. C. Greubel, Apr 24 2023
(SageMath)
def A120072(n, k): return numerator(1/k^2 - 1/n^2)
flatten([[A120072(n, k) for k in range(1, n)] for n in range(2, 19)]) # G. C. Greubel, Apr 24 2023
CROSSREFS
KEYWORD
AUTHOR
Wolfdieter Lang, Jul 20 2006
STATUS
approved