login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120076
Numerators of row sums of rational triangle A120072/A120073.
6
3, 37, 169, 4549, 4769, 241481, 989549, 9072541, 1841321, 225467009, 227698469, 38801207261, 39076419341, 196577627041, 790503882349, 229526961468061, 230480866420061, 83512167402400421, 3351610394325821
OFFSET
2,1
COMMENTS
The corresponding denominators are given by A120077.
See the W. Lang link under A120072 for more details.
LINKS
FORMULA
a(n) = numerator(r(m)), with the rationals r(m) = Sum_{n=1..m-1} A120072(m,n)/A120073(m,n), m >= 2.
The rationals are r(m) = Zeta(2; m-1) - (m-1)/m^2, m >= 2, with the partial sums Zeta(2; n) = Sum_{k=1..n} 1/k^2. See the W. Lang link in A103345.
O.g.f. for the rationals r(m), m>=2: log(1-x) + polylog(2,x)/(1-x).
EXAMPLE
The rationals a(m)/A120077(m), m>=2, begin with (3/4, 37/36, 169/144, 4549/3600, 4769/3600, ...).
MATHEMATICA
Table[Numerator[HarmonicNumber[n, 2] -1/n], {n, 2, 40}] (* G. C. Greubel, Apr 24 2023 *)
PROG
(Magma)
A120076:= func< n | Numerator( (&+[1/k^2: k in [1..n]]) -1/n) >;
[A120076(n): n in [2..30]]; // G. C. Greubel, Apr 24 2023
(SageMath)
def A120076(n): return numerator(harmonic_number(n, 2) - 1/n)
[A120076(n) for n in range(2, 31)] # G. C. Greubel, Apr 24 2023
CROSSREFS
KEYWORD
nonn,easy,frac
AUTHOR
Wolfdieter Lang, Jul 20 2006
STATUS
approved