login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerators of row sums of rational triangle A120072/A120073.
6

%I #13 Apr 25 2023 06:17:48

%S 3,37,169,4549,4769,241481,989549,9072541,1841321,225467009,227698469,

%T 38801207261,39076419341,196577627041,790503882349,229526961468061,

%U 230480866420061,83512167402400421,3351610394325821

%N Numerators of row sums of rational triangle A120072/A120073.

%C The corresponding denominators are given by A120077.

%C See the W. Lang link under A120072 for more details.

%H G. C. Greubel, <a href="/A120076/b120076.txt">Table of n, a(n) for n = 2..1000</a>

%F a(n) = numerator(r(m)), with the rationals r(m) = Sum_{n=1..m-1} A120072(m,n)/A120073(m,n), m >= 2.

%F The rationals are r(m) = Zeta(2; m-1) - (m-1)/m^2, m >= 2, with the partial sums Zeta(2; n) = Sum_{k=1..n} 1/k^2. See the W. Lang link in A103345.

%F O.g.f. for the rationals r(m), m>=2: log(1-x) + polylog(2,x)/(1-x).

%e The rationals a(m)/A120077(m), m>=2, begin with (3/4, 37/36, 169/144, 4549/3600, 4769/3600, ...).

%t Table[Numerator[HarmonicNumber[n,2] -1/n], {n,2,40}] (* _G. C. Greubel_, Apr 24 2023 *)

%o (Magma)

%o A120076:= func< n | Numerator( (&+[1/k^2: k in [1..n]]) -1/n) >;

%o [A120076(n): n in [2..30]]; // _G. C. Greubel_, Apr 24 2023

%o (SageMath)

%o def A120076(n): return numerator(harmonic_number(n,2) - 1/n)

%o [A120076(n) for n in range(2,31)] # _G. C. Greubel_, Apr 24 2023

%Y Cf. A120070, A120072, A120073, A120074, A120075, A120077.

%K nonn,easy,frac

%O 2,1

%A _Wolfdieter Lang_, Jul 20 2006