login
A120079
Unsigned row sums of triangle A120078.
2
1, 7, 68, 279, 7056, 7100, 349200, 1400175, 12622400, 12637296, 1530446400, 1531460700, 258950260800, 259056111600, 259141506624, 1036845584775, 299715332716800, 299771444772800, 108234634597689600, 108249271042728816, 108261866776377600, 108272784263716800
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{k=1..n} abs(A120078(n,k)), n >= 1.
From G. C. Greubel, Apr 26 2023: (Start)
a(n) = (2 - 1/n^2)*A051418(n).
a(n) = A056220(n)*A051418(n)/A000290(n). (End)
MATHEMATICA
Table[(2-1/n^2)*(Apply[LCM, Range[n]])^2, {n, 40}] (* G. C. Greubel, Apr 26 2023 *)
PROG
(Magma) [(2-1/n^2)*(Lcm([1..n]))^2: n in [1..40]]; // G. C. Greubel, Apr 26 2023
(SageMath)
def A120079(n): return (2 - 1/n^2)*(lcm(range(1, n+1)))^2
[A120079(n) for n in range(1, 41)] # G. C. Greubel, Apr 26 2023
CROSSREFS
Signed row sums conjectured to be A027451(n), which also appears in the denominator of o.g.f.s. G(x, n) given in A120078 as numbers A(n).
Sequence in context: A182127 A093170 A294664 * A297502 A087567 A328046
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jul 20 2006
EXTENSIONS
Terms a(11) onward added by G. C. Greubel, Apr 26 2023
STATUS
approved