login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028563
a(n) = n*(n+7).
22
0, 8, 18, 30, 44, 60, 78, 98, 120, 144, 170, 198, 228, 260, 294, 330, 368, 408, 450, 494, 540, 588, 638, 690, 744, 800, 858, 918, 980, 1044, 1110, 1178, 1248, 1320, 1394, 1470, 1548, 1628, 1710, 1794, 1880, 1968, 2058, 2150, 2244, 2340, 2438, 2538, 2640, 2744, 2850, 2958, 3068, 3180, 3294
OFFSET
0,2
COMMENTS
a(m), for m >= 1, are the only positive integer values of t for which the Binet-de Moivre formula of the recurrence b(n) = 7*b(n-1) + t*b(n-2) has a square root whose radicand is a square. In particular, sqrt(7^2+4*t) is a positive integer since 7^2 + 4*t = 7^2 + 4*a(m) = (2*m + 7)^2. Thus the characteristic roots are r1 = 7 + m and r2 = -m. - Felix P. Muga II, Mar 28 2014 (edited - Wolfdieter Lang, Apr 17 2014)
FORMULA
a(n) = 2*A055999(n). - Zerinvary Lajos, Feb 12 2007
a(n) = 2*n + a(n-1) + 6. - Vincenzo Librandi, Aug 05 2010
Sum_{n>=1} 1/a(n) = 363/980 = 0.37040816... - R. J. Mathar, Mar 22 2011
G.f.: 2*x*(4-3*x)/(1-x)^3. - Colin Barker, Feb 17 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/7 - 319/2940. - Amiram Eldar, Jan 15 2021
From Amiram Eldar, Feb 12 2024: (Start)
Product_{n>=1} (1 - 1/a(n)) = 720*cos(sqrt(53)*Pi/2)/(143*Pi).
Product_{n>=1} (1 + 1/a(n)) = -112*cos(3*sqrt(5)*Pi/2)/(11*Pi). (End)
From Elmo R. Oliveira, Dec 12 2024: (Start)
E.g.f.: exp(x)*x*(8 + x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
MAPLE
A028563:=n->n*(n + 7); seq(A028563(n), n=0..50); # Wesley Ivan Hurt, Mar 30 2014
MATHEMATICA
CoefficientList[Series[2 x (4 - 3 x)/(1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Oct 18 2013 *)
LinearRecurrence[{3, -3, 1}, {0, 8, 18}, 60] (* Harvey P. Dale, Oct 07 2015 *)
PROG
(Magma) [n*(n+7): n in [0..60]]; // Vincenzo Librandi, Oct 18 2013
(PARI) a(n)=n*(n+7) \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Sequence in context: A278546 A092163 A100592 * A171523 A120091 A211526
KEYWORD
nonn,easy,changed
STATUS
approved