The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A028560 a(n) = n*(n + 6). 41
0, 7, 16, 27, 40, 55, 72, 91, 112, 135, 160, 187, 216, 247, 280, 315, 352, 391, 432, 475, 520, 567, 616, 667, 720, 775, 832, 891, 952, 1015, 1080, 1147, 1216, 1287, 1360, 1435, 1512, 1591, 1672, 1755, 1840, 1927, 2016, 2107, 2200, 2295, 2392 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Nonnegative X values of solutions to the equation X + (X + 3)^2 + (X + 6)^3 = Y^2. To prove that X = n^2 + 6n: Y^2 = X + (X + 3)^2 + (X + 6)^3 = X^3 + 19*X^2 + 115X + 225 = (X + 9)*(X^2 + 10X + 25) = (X + 9)*(X + 5)^2 it means: (X + 9) must be a perfect square, so X = k^2 - 9 with k>=3. we can put: k = n + 3, which gives: X = n^2 + 6n and Y = (n + 3)*(n^2 + 6n + 5). - Mohamed Bouhamida, Nov 12 2007
a(m) where m is a positive integer are the only positive integer values of t for which the Binet-de Moivre Formula of the recurrence b(n)=6*b(n-1)+t*b(n-2) with b(0)=0 and b(1)=1 has a root which is a square. In particular, sqrt(6^2+4*t) is an integer since 6^2+4*t=6^2+4*a(m)=(2*m+6)^2. Thus, the charcteristic roots are k1=6+m and k2=-m. - Felix P. Muga II, Mar 27 2014
Also, numbers k such that k + 9 is a perfect square.
LINKS
Milan Janjic and Boris Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
F. P. Muga II, Extending the Golden Ratio and the Binet-de Moivre Formula, March 2014; Preprint on ResearchGate.
FORMULA
a(n) = (n+3)^2 - 3^2 = n*(n+6).
G.f.: x*(7-5*x)/(1-x)^3.
a(n) = 2*n + a(n-1) + 5. - Vincenzo Librandi, Aug 05 2010
Sum_{n>=1} 1/a(n) = 49/120 = 0.4083333... - R. J. Mathar, Mar 22 2011
a(n) = A028884(n) - 1. - Reinhard Zumkeller, Apr 07 2013
E.g.f.: x*(x+7)*exp(x). - G. C. Greubel, Aug 19 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = 37/360. - Amiram Eldar, Nov 04 2020
a(n) = A056220(n+1) - A000290(n-1). - Leo Tavares, Sep 29 2022
From Amiram Eldar, Feb 05 2024: (Start)
Product_{n>=1} (1 - 1/a(n)) = -4*sqrt(10)*sin(sqrt(10)*Pi)/(3*Pi).
Product_{n>=1} (1 + 1/a(n)) = 45*sqrt(2)*sin(2*sqrt(2)*Pi)/(7*Pi). (End)
MAPLE
A028560:=n->n*(n + 6); seq(A028560(n), n=0..100); # Wesley Ivan Hurt, Mar 27 2014
MATHEMATICA
Table[n(n + 6), {n, 0, 65}]
PROG
(Haskell)
a028560 n = n * (n + 6) -- Reinhard Zumkeller, Apr 07 2013
(PARI) a(n)=n*(n+6) \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
a(n-3), n>=4, third column (used for the Paschen series of the hydrogen atom) of triangle A120070.
Cf. A005563.
Sequence in context: A052221 A119461 A326664 * A190530 A345071 A351044
KEYWORD
nonn,easy,changed
AUTHOR
EXTENSIONS
Edited by Robert G. Wilson v, Feb 06 2002
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 16:47 EDT 2024. Contains 372664 sequences. (Running on oeis4.)