login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225946
Nonsquare k such that the minimal (in y) solution 0 < y < x of x^2 - k*y^2 = 1 has x-y square.
1
2, 3, 17, 24, 30, 40, 44, 84, 87, 99, 130, 182, 260, 288, 442, 448, 635, 650, 672, 675, 888, 894, 1211, 1299, 1368, 1605, 1616, 1722, 1748, 1955, 2034, 2499, 2541, 3150, 3287, 3782, 4224, 4400, 4920, 5073, 5619, 6723, 7242, 7310, 8487, 9228, 10200, 11055
OFFSET
1,1
COMMENTS
Numbers n such that A002350(n) - A002349(n) is a nonzero square. - Charles R Greathouse IV, Jun 06 2013
LINKS
EXAMPLE
3^2 - 2*2^2 = 1 and 3 - 2 = 1 (square), so a(1) = 2;
2^2 - 3*1^2 = 1 and 2 - 1 = 1 (square), so a(2) = 3;
33^2 - 17*8^2 = 25 and 33 - 8 = 25 (square), so a(3) = 17.
MATHEMATICA
qQ[n_] := IntegerQ@Sqrt@n; Select[Range[500], ! qQ[#] && qQ[(x - y) /. ToRules[Expand[ Reduce[x^2 - #*y^2 == 1 && x>0 && y>0, {x, y}, Integers] /. C[1] -> 1]]] &] (* Giovanni Resta, May 25 2013 *)
PROG
(PARI) is(n)=if(issquare(n), return(0)); my(cf=contfrac(sqrt(n)), t, N, D); for(i=1, #cf-1, t=cf[i+1]; forstep(j=i, 1, -1, t=cf[j]+1/t); N=numerator(t); D=denominator(t); if(N^2-n*D^2==1, return(issquare(N-D)))); warning("Insufficient precision for "n) \\ Charles R Greathouse IV, Jun 06 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Irina Gerasimova, May 21 2013
EXTENSIONS
a(15)-a(47) from Giovanni Resta, May 25 2013
STATUS
approved