login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276997
Denominators of coefficients of polynomials arising from applying the complete Bell polynomials to k!B_k(x)/(k*(k-1)) with B_k(x) the Bernoulli polynomials.
2
1, 1, 1, 6, 1, 1, 1, 2, 2, 1, 60, 1, 1, 1, 1, 1, 6, 2, 3, 1, 1, 504, 4, 4, 1, 1, 1, 1, 1, 24, 8, 12, 2, 2, 2, 1, 2160, 18, 9, 3, 2, 1, 3, 1, 1, 1, 60, 4, 6, 1, 5, 1, 1, 1, 1, 3168, 48, 16, 6, 3, 2, 2, 1, 2, 1, 1, 1, 288, 32, 144, 12, 12, 4, 2, 1, 6, 2, 1
OFFSET
0,4
COMMENTS
For formulas and references see A276996.
Compare T(n,0) with A220411.
EXAMPLE
Triangle starts:
1;
1, 1;
6, 1, 1;
1, 2, 2, 1;
60, 1, 1, 1, 1;
1, 6, 2, 3, 1, 1;
504, 4, 4, 1, 1, 1, 1;
1, 24, 8, 12, 2, 2, 2, 1;
2160, 18, 9, 3, 2, 1, 3, 1, 1;
MAPLE
A276997_row := proc(n) local p;
p := (n, x) -> CompleteBellB(n, 0, seq((k-2)!*bernoulli(k, x), k=2..n)):
seq(denom(coeff(p(n, x), x, k)), k=0..n) end:
seq(A276997_row(n), n=0..11);
MATHEMATICA
CompleteBellB[n_, zz_] := Sum[BellY[n, k, zz[[1 ;; n-k+1]]], {k, 1, n}];
p[n_, x_] := CompleteBellB[n, Join[{0}, Table[(k-2)! BernoulliB[k, x], {k, 2, n}]]];
row[0] = {1}; row[1] = {1, 1}; row[n_] := CoefficientList[p[n, x], x] // Denominator;
Table[row[n], {n, 0, 11}] // Flatten (* Jean-François Alcover, Sep 09 2018 *)
CROSSREFS
Cf. A276996 (numerators), A220411.
Sequence in context: A126795 A348929 A334491 * A324394 A064793 A355925
KEYWORD
nonn,frac,tabl
AUTHOR
Peter Luschny, Oct 01 2016
STATUS
approved