login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126795
a(n) = gcd(n, Product_{p|n} (p+1)), where the product is over the distinct primes p that divide n.
6
1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 12, 1, 2, 3, 1, 1, 6, 1, 2, 1, 2, 1, 12, 1, 2, 1, 4, 1, 6, 1, 1, 3, 2, 1, 12, 1, 2, 1, 2, 1, 6, 1, 4, 3, 2, 1, 12, 1, 2, 3, 2, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 1, 1, 1, 6, 1, 2, 3, 2, 1, 12, 1, 2, 3, 4, 1, 6, 1, 2, 1, 2, 1, 12, 1, 2, 3, 4, 1, 18, 7, 4, 1, 2, 5, 12, 1, 2, 3, 2, 1
OFFSET
1,6
COMMENTS
First occurrence of k: 1, 10, 15, 28, 95, 6, 91, 56, 153, 190, 473, 12, 1339, 182, 285, 496, 1139, 90, 703, 380, ..., . - Robert G. Wilson v
LINKS
FORMULA
a(n) = gcd(n, A048250(n)).
a(n) = gcd(n, A325313(n)) = gcd(n, A048250(n)-n). - Antti Karttunen, Apr 24 2019
EXAMPLE
The distinct primes that divide 28 are 2 and 7. So a(28) = GCD(28, (2+1)(7+1)) = GCD(28, 24) = 4.
MAPLE
with(numtheory): a:=proc(n) local fs: fs:=factorset(n): gcd(n, product(1+fs[i], i=1..nops(fs))) end: seq(a(n), n=1..120); # Emeric Deutsch, Mar 27 2007
MATHEMATICA
f[n_] := GCD[n, Times @@ (First /@ FactorInteger[n] + 1)]; Array[f, 101] (* Robert G. Wilson v *)
PROG
(PARI) A126795(n) = gcd(n, factorback(apply(p -> p+1, factor(n)[, 1]))); \\ Antti Karttunen, Sep 10 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Leroy Quet, Mar 14 2007
EXTENSIONS
More terms from Emeric Deutsch, Mar 27 2007
STATUS
approved