The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A237835 a(n) = n*(Pisano period of n) divided by (Pisano period of n^2). 4
 1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 12, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 6, 1, 2, 1, 4, 1, 6, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 6, 1, 1, 1, 2, 1, 3, 1, 2, 3, 2, 1, 2, 1, 4, 3, 2, 1, 12, 1, 2, 1, 1, 1, 6, 1, 2, 3, 2, 1, 2, 1, 2, 1, 1, 1, 6, 1, 1, 1, 2, 1, 12, 1, 2, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 LINKS Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 Arpan Saha and C. S. Karthik, A few equivalences of Wall-Sun-Sun prime conjecture, arXiv:1102.1636 [math.NT], 2011. Eric Weisstein's World of Mathematics, Pisano period. Wikipedia, Pisano period. FORMULA a(n) = n/A237517(n). MATHEMATICA pp[1] = 1; pp[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0 && Mod[Fibonacci[k+1], n] == 1, Return[k]]]; a[n_] := n pp[n]/pp[n^2]; Array[a, 100] (* Jean-François Alcover, Dec 06 2018 *) PROG (PARI) fibmod(n, m)=((Mod([1, 1; 1, 0], m))^n)[1, 2] entry_p(p)=my(k=1, c=Mod(1, p), o); while(c, [o, c]=[c, c+o]; k++); k entry(n)=if(n==1, return(1)); my(f=factor(n), v); v=vector(#f~, i, if(f[i, 1]>1e14, entry_p(f[i, 1]^f[i, 2]), entry_p(f[i, 1])*f[i, 1]^(f[i, 2] - 1))); if(f[1, 1]==2&&f[1, 2]>1, v[1]=3<

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 27 03:13 EST 2021. Contains 349344 sequences. (Running on oeis4.)