login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A237517
Pisano period of n^2 divided by Pisano period of n.
5
1, 2, 3, 4, 5, 1, 7, 8, 9, 5, 11, 1, 13, 7, 15, 16, 17, 9, 19, 10, 21, 11, 23, 4, 25, 13, 27, 7, 29, 5, 31, 32, 33, 17, 35, 9, 37, 19, 39, 40, 41, 7, 43, 44, 45, 23, 47, 16, 49, 25, 17, 26, 53, 27, 55, 14, 19, 29, 59, 5, 61, 31, 63, 64, 65, 11, 67, 34, 23
OFFSET
1,2
COMMENTS
For all n, a(n) | n.
Conjecture (Saha & Karthik): a(n) = 1 only for n = 1, 6, and 12.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Arpan Saha and C. S. Karthik, A few equivalences of Wall-Sun-Sun prime conjecture, arXiv:1102.1636 [math.NT], 2011.
MATHEMATICA
pp[1] = 1; pp[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0 && Mod[Fibonacci[k+1], n] == 1, Return[k]]];
a[n_] := pp[n^2]/pp[n];
Array[a, 100] (* Jean-François Alcover, Dec 04 2018 *)
PROG
(PARI) fibmod(n, m)=((Mod([1, 1; 1, 0], m))^n)[1, 2]
entry_p(p)=my(k=1, c=Mod(1, p), o); while(c, [o, c]=[c, c+o]; k++); k
entry(n)=if(n==1, return(1)); my(f=factor(n), v); v=vector(#f~, i, if(f[i, 1]>1e14, entry_p(f[i, 1]^f[i, 2]), entry_p(f[i, 1])*f[i, 1]^(f[i, 2] - 1))); if(f[1, 1]==2&&f[1, 2]>1, v[1]=3<<max(f[1, 2]-2, 1)); lcm(v)
per(n)=if(n==1, return(1)); my(k=entry(n)); forstep(i=k, n^2, k, if(fibmod(i-1, n)==1, return(i)))
a(n)=per(n^2)/per(n)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved