login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Pisano period of n^2 divided by Pisano period of n.
5

%I #43 Dec 04 2018 04:09:58

%S 1,2,3,4,5,1,7,8,9,5,11,1,13,7,15,16,17,9,19,10,21,11,23,4,25,13,27,7,

%T 29,5,31,32,33,17,35,9,37,19,39,40,41,7,43,44,45,23,47,16,49,25,17,26,

%U 53,27,55,14,19,29,59,5,61,31,63,64,65,11,67,34,23

%N Pisano period of n^2 divided by Pisano period of n.

%C For all n, a(n) | n.

%C Conjecture (Saha & Karthik): a(n) = 1 only for n = 1, 6, and 12.

%H Charles R Greathouse IV, <a href="/A237517/b237517.txt">Table of n, a(n) for n = 1..10000</a>

%H Arpan Saha and C. S. Karthik, <a href="http://arxiv.org/abs/1102.1636">A few equivalences of Wall-Sun-Sun prime conjecture</a>, arXiv:1102.1636 [math.NT], 2011.

%t pp[1] = 1; pp[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0 && Mod[Fibonacci[k+1], n] == 1, Return[k]]];

%t a[n_] := pp[n^2]/pp[n];

%t Array[a, 100] (* _Jean-François Alcover_, Dec 04 2018 *)

%o (PARI) fibmod(n,m)=((Mod([1,1;1,0],m))^n)[1,2]

%o entry_p(p)=my(k=1,c=Mod(1,p),o); while(c,[o,c]=[c,c+o];k++); k

%o entry(n)=if(n==1,return(1)); my(f=factor(n), v); v=vector(#f~, i, if(f[i,1]>1e14,entry_p(f[i,1]^f[i,2]), entry_p(f[i,1])*f[i,1]^(f[i,2] - 1))); if(f[1,1]==2&&f[1,2]>1, v[1]=3<<max(f[1,2]-2,1)); lcm(v)

%o per(n)=if(n==1, return(1)); my(k=entry(n)); forstep(i=k,n^2,k, if(fibmod(i-1,n)==1,return(i)))

%o a(n)=per(n^2)/per(n)

%Y Cf. A001175, A001176, A237835.

%K nonn

%O 1,2

%A _Charles R Greathouse IV_, Feb 13 2014