login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253247
Pisano period of A006190(n^2) divided by Pisano period of A006190(n).
2
1, 2, 3, 4, 5, 1, 7, 8, 9, 5, 11, 4, 13, 7, 5, 16, 17, 9, 19, 10, 21, 11, 23, 8, 25, 13, 27, 7, 29, 5, 31, 32, 33, 17, 35, 36, 37, 19, 39, 40, 41, 7, 43, 11, 45, 23, 47, 16, 49, 25, 51, 26, 53, 27, 55, 14, 57, 29, 59, 10, 61, 31, 63, 64, 65, 11, 67, 17, 69, 35, 71, 72
OFFSET
1,2
COMMENTS
For all n, a(n)|n.
Conjecture: a(n) = 1 only for n = 1 and 6. (This conjecture is true if and only if the generalized Wall's conjecture to A006190 is true.)
If there exists any prime p such that A175182(p^2) = A175182(p), then the conjecture fails.
For any prime p, these three statements are equivalent:
(1) A175182(p^2) = A175182(p).
(2) A006190(p-(p|13)) = 3 (mod p^2).
(3) A006497(p) = 1 (mod p^2).
Since A175182(241^2) = A175182(241) = 484, so the prime 241 is a Wall-Sun-Sun prime to A006190 (Lucas (P, Q) = (3, -1)) and no others < 10^8, so the conjecture is true for all primes < 10^8 except 241.
All of Wall's theorems are true for A175182. For example, let P(n) = A175182(n), p and q are primes, then P(pq) = lcm(P(p), P(q)), and for every prime p, P(p)|(p-1) if (p|13) = 1, P(p)|(2p+2) if (p|13) = -1 (P(13) = 52, which if divisible by 13), while (p|13) is the Legendre symbol, and the fixed points of A175182 are 1, 6, and 12*13^k, k>0.
FORMULA
a(n) = A175182(n^2) / A175182(n).
MAPLE
F := proc(k, n) option remember; if n <= 1 then n; else k*procname(k, n-1)+procname(k, n-2) ; end if; end proc:
Pper := proc(k, m) local cha, zer, n, fmodm ; cha := [] ; zer := [] ; for n from 0 do fmodm := F(k, n) mod m ; cha := [op(cha), fmodm] ; if fmodm = 0 then zer := [op(zer), n] ; end if; if nops(zer) = 5 then break; end if; end do ; if [op(1..zer[2], cha) ] = [ op(zer[2]+1..zer[3], cha) ] and [op(1..zer[2], cha)] = [ op(zer[3]+1..zer[4], cha) ] and [op(1..zer[2], cha)] = [ op(zer[4]+1..zer[5], cha) ] then return zer[2] ; elif [op(1..zer[3], cha) ] = [ op(zer[3]+1..zer[5], cha) ] then return zer[3] ; else return zer[5] ; end if; end proc:
k := 3 ; seq( Pper(k, m^2) div Pper(k, m), m=1..300) ;
MATHEMATICA
A006190[n_] = Fibonacci[n, 3];
A175182[n_2 = For[k=1, while[Mod[A006190[k], n] != 0 || Mod[A006190[k+1], n] != 1, k++]; k];
Table[A175182[n^2] / A175182[n], {n, 300}]
PROG
(PARI)
fibmod(n, m)=((Mod([3, 1; 1, 0], m))^n)[1, 2]
entry_p(p)=my(k=1, c=Mod(1, p), o); while(c, [o, c]=[c, 3*c+o]; k++); k
entry(n)=if(n==1, return(1)); my(f=factor(n), v); v=vector(#f~, i, if(f[i, 1]>1e8 && f[i, 1] != 241, entry_p(f[i, 1]^f[i, 2]), entry_p(f[i, 1])*f[i, 1]^(f[i, 2] - 1))); if(f[1, 1]==2&&f[1, 2]>1, v[1]=3<<max(f[1, 2]-2, 1)); lcm(v)
per(n)=if(n==1, return(1)); my(k=entry(n)); forstep(i=k, n^2, k, if(fibmod(i-1, n)==1, return(i)))
a(n)=per(n^2)/per(n)
CROSSREFS
Sequence in context: A237517 A332883 A017666 * A201059 A325959 A325976
KEYWORD
nonn
AUTHOR
Eric Chen, Apr 09 2015
STATUS
approved