OFFSET
1,2
COMMENTS
For all n, a(n)|n.
Conjecture: a(n) = 1 only for n = 1 and 6. (This conjecture is true if and only if the generalized Wall's conjecture to A006190 is true.)
For any prime p, these three statements are equivalent:
(2) A006190(p-(p|13)) = 3 (mod p^2).
(3) A006497(p) = 1 (mod p^2).
Since A175182(241^2) = A175182(241) = 484, so the prime 241 is a Wall-Sun-Sun prime to A006190 (Lucas (P, Q) = (3, -1)) and no others < 10^8, so the conjecture is true for all primes < 10^8 except 241.
All of Wall's theorems are true for A175182. For example, let P(n) = A175182(n), p and q are primes, then P(pq) = lcm(P(p), P(q)), and for every prime p, P(p)|(p-1) if (p|13) = 1, P(p)|(2p+2) if (p|13) = -1 (P(13) = 52, which if divisible by 13), while (p|13) is the Legendre symbol, and the fixed points of A175182 are 1, 6, and 12*13^k, k>0.
LINKS
Eric Chen, Table of n, a(n) for n = 1..1000
MAPLE
F := proc(k, n) option remember; if n <= 1 then n; else k*procname(k, n-1)+procname(k, n-2) ; end if; end proc:
Pper := proc(k, m) local cha, zer, n, fmodm ; cha := [] ; zer := [] ; for n from 0 do fmodm := F(k, n) mod m ; cha := [op(cha), fmodm] ; if fmodm = 0 then zer := [op(zer), n] ; end if; if nops(zer) = 5 then break; end if; end do ; if [op(1..zer[2], cha) ] = [ op(zer[2]+1..zer[3], cha) ] and [op(1..zer[2], cha)] = [ op(zer[3]+1..zer[4], cha) ] and [op(1..zer[2], cha)] = [ op(zer[4]+1..zer[5], cha) ] then return zer[2] ; elif [op(1..zer[3], cha) ] = [ op(zer[3]+1..zer[5], cha) ] then return zer[3] ; else return zer[5] ; end if; end proc:
k := 3 ; seq( Pper(k, m^2) div Pper(k, m), m=1..300) ;
MATHEMATICA
PROG
(PARI)
fibmod(n, m)=((Mod([3, 1; 1, 0], m))^n)[1, 2]
entry_p(p)=my(k=1, c=Mod(1, p), o); while(c, [o, c]=[c, 3*c+o]; k++); k
entry(n)=if(n==1, return(1)); my(f=factor(n), v); v=vector(#f~, i, if(f[i, 1]>1e8 && f[i, 1] != 241, entry_p(f[i, 1]^f[i, 2]), entry_p(f[i, 1])*f[i, 1]^(f[i, 2] - 1))); if(f[1, 1]==2&&f[1, 2]>1, v[1]=3<<max(f[1, 2]-2, 1)); lcm(v)
per(n)=if(n==1, return(1)); my(k=entry(n)); forstep(i=k, n^2, k, if(fibmod(i-1, n)==1, return(i)))
a(n)=per(n^2)/per(n)
CROSSREFS
KEYWORD
nonn
AUTHOR
Eric Chen, Apr 09 2015
STATUS
approved