login
A237837
Number of primes p < n such that the number of Sophie Germain primes among 1, ..., n-p is a cube.
1
0, 0, 1, 2, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 2, 2, 2, 3, 3, 5, 5, 5, 5, 5, 5, 6, 6, 7, 7, 7, 7, 9, 9, 9, 9, 9, 9, 9, 9, 10
OFFSET
1,4
COMMENTS
Conjecture: a(n) > 0 for all n > 53.
LINKS
EXAMPLE
a(55) = 2 since 53 is prime and there is exactly 1^3 = 1 Sophie Germain prime not exceeding 55 - 53 = 2, and 2 is prime and there are exactly 2^3 = 8 Sophie Germain primes not exceeding 55 - 2 = 53 (namely, they are 2, 3, 5, 11, 23, 29, 41, 53).
MATHEMATICA
sg[n_]:=Sum[If[PrimeQ[2*Prime[k]+1], 1, 0], {k, 1, PrimePi[n]}]
CQ[n_]:=IntegerQ[n^(1/3)]
a[n_]:=Sum[If[CQ[sg[n-Prime[k]]], 1, 0], {k, 1, PrimePi[n-1]}]
Table[a[n], {n, 1, 80}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Feb 13 2014
STATUS
approved