login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A237839
a(n) = |{0 < k <= n: q = |{p <= k*n: p and p + 2 are both prime}| and q + 2 are both prime}|.
3
0, 0, 0, 2, 1, 3, 2, 3, 1, 2, 2, 3, 3, 2, 2, 5, 2, 3, 3, 4, 2, 2, 2, 3, 1, 2, 2, 3, 3, 2, 3, 2, 2, 3, 6, 7, 5, 5, 3, 4, 3, 3, 4, 3, 3, 4, 4, 4, 5, 4, 5, 3, 3, 4, 3, 2, 2, 3, 4, 3, 4, 3, 3, 6, 6, 5, 5, 4, 5, 3, 5, 8, 4, 3, 3, 4, 1, 3, 4, 3
OFFSET
1,4
COMMENTS
Conjecture: a(n) > 0 for all n > 3, and a(n) = 1 only for n = 5, 9, 25, 77, 104.
See also A237838 for a similar conjecture involving Sophie Germain primes.
EXAMPLE
a(9) = 1 since {p <= 4*9: p and p + 2 are both prime} = {3, 5, 11, 17, 29} has cardinality 5 and {5, 7} is a twin prime pair.
MATHEMATICA
TQ[n_]:=PrimeQ[n]&&PrimeQ[n+2]
tq[n_]:=Sum[If[PrimeQ[Prime[k]+2], 1, 0], {k, 1, PrimePi[n]}]
a[n_]:=Sum[If[TQ[tq[k*n]], 1, 0], {k, 1, n}]
Table[a[n], {n, 1, 80}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Feb 14 2014
STATUS
approved