login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102853
Number of prime factors (with multiplicity) of number of points on surface of square pyramid.
1
1, 1, 2, 1, 3, 2, 3, 1, 2, 3, 2, 2, 3, 1, 3, 1, 4, 2, 2, 3, 2, 3, 2, 2, 3, 1, 4, 2, 3, 3, 3, 2, 3, 2, 3, 1, 3, 2, 3, 3, 5, 2, 2, 2, 4, 2, 4, 2, 2, 3, 4, 3, 2, 1, 6, 2, 3, 1, 4, 2, 3, 4, 3, 1, 3, 2, 3, 1, 3, 2, 2, 5, 4, 2, 4, 2, 3, 1, 2, 4, 2, 3, 4, 2, 4, 2, 4, 1, 2, 4, 3, 2, 2, 3, 4, 1, 5, 1, 2, 2, 3
OFFSET
0,3
COMMENTS
Prime for n = 1, 3, 7, 13, 15, 25, 35, 53, 57, 63, 67, 77, 87, 95, 97, 123, 125, 133, 153, 155, 165, 183, 185, 195, 207, 217, 227, 245, 253, 255, 263, 273, 277, 295, ... Semiprime for n = 2, 5, 8, 10, 11, 17, 18, 20, 22, 23, 27, 31, 33, 37, 41, 42, 43, 45, 47, 48, 52, 55, 59, 65, 69, 70, 73, 75, 78, 80, 83, 85, 88, 91, 92, 98, 99, 101, 102, 103, 108, 109, 111, 113, 115, 117, 118, 120, 137, 139, 140, 143, 145, 147, 150, 151, 157, 158, 162, 167, 168, 169, 175, 178, 188, 189, 190, 193, 197, 199, 203, 209, 211, 213, 218, 223, 225, 228, 232, 237, 238, 239, 241, 243, 249, 252, 257, 262, 267, 272, 275, 283, 287, 290, 297, ... 3-almost prime for n = 4, 6, 9, 12, 14, 19, 21, 24, 28, 29, 30, 32, 34, 36, 38, 39, 49, 51, 56, 60, 62, 64, 66, 68, 76, 81, 90, 93, 100,...
REFERENCES
H. S. M. Coxeter, "Polyhedral numbers," in R. S. Cohen et al., editors, For Dirk Struik. Reidel, Dordrecht, 1974, pp. 25-35.
B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.
A. F. Wells, Three-Dimensional Nets and Polyhedra, Fig. 15.1 (e).
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 0..10000
Eric Weisstein's World of Mathematics, Prime Factor.
FORMULA
a(n) = A001222(A005918(n)). a(n) = Bigomega(A005918(n)). a(n) = A001222(3*n^2 + 2).
EXAMPLE
a(147) = 2 because A005918(147) = 3*147^2+2 = 64829 = 241 * 269, which has exactly two prime factors (which happen to be of the same number of digits).
a(197) = 2 because A005918(197) = 3*197^2+2 = 116429 = 173 * 673.
a(223) = 2 because A005918(223) = 3*223^2+2 = 149189 = 193 * 773.
a(265) = 2 because A005918(265) = 3*265^2+2 = 210677 = 457 * 461.
a(105) = 3 because A005918(105) = 3*105^2+2 = 33077 = 11 * 31 * 97.
a(127) = 3 because A005918(127) = 3*127^2+2 = 48389 = 11 * 53 * 83.
PROG
(PARI) a(n)=bigomega(3*n^2+2) \\ Charles R Greathouse IV, Feb 05 2017
CROSSREFS
Sequence in context: A275832 A237839 A101608 * A304099 A293390 A363654
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Feb 28 2005
EXTENSIONS
a(0) corrected by Charles R Greathouse IV, Feb 05 2017
STATUS
approved