The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A102855 Minimal number of distinct nonzero tetrahedral numbers needed to represent n, or -1 if no such representation is possible. 6
 1, -1, -1, 1, 2, -1, -1, -1, -1, 1, 2, -1, -1, 2, 3, -1, -1, -1, -1, 1, 2, -1, -1, 2, 3, -1, -1, -1, -1, 2, 3, -1, -1, 3, 1, 2, -1, -1, 2, 3, -1, -1, -1, -1, 2, 3, -1, -1, 3, 4, -1, -1, -1, -1, 2, 1, 2, -1, 3, 2, 3, -1, -1, -1, 3, 2, 3, -1, 4, 3, 4, -1, -1, -1, -1, 2, 3, -1, -1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 LINKS Robert Israel, Table of n, a(n) for n = 1..10000 MAPLE N:= 100; # for a(1)..a(N) ft:= t -> t*(t+1)*(t+2)/6: tets:= map(ft, [\$1..floor((6*N)^(1/3))]: f:= proc(n, tmax) option remember;    local res, s;    if member(n, tets) and n < tmax then return 1 fi;    min(seq(1 + procname(n-s, s), s=select(`<`, tets, min(n, tmax)))); end proc: subs(infinity=-1, map(f, [\$1..N], infinity)); # Robert Israel, Dec 29 2019 MATHEMATICA M = 100; (* number of terms *) ft[t_] := t(t+1)(t+2)/6; tets = ft /@ Range[1, Floor[(6M)^(1/3)]]; f[n_, tmax_] := f[n, tmax] = If[MemberQ[tets, n] && n < tmax, 1, Min[ Table[1 + f[n-s, s], {s, Select[tets, # < Min[n, tmax]&]}]]]; f[#, Infinity]& /@ Range[1, M] /. Infinity -> -1 (* Jean-François Alcover, Aug 05 2022, after Robert Israel *) CROSSREFS Cf. A104246, A102795-A102806, A102856-A102858. Sequence in context: A214566 A213982 A275811 * A124148 A174435 A330749 Adjacent sequences:  A102852 A102853 A102854 * A102856 A102857 A102858 KEYWORD sign,changed AUTHOR Jud McCranie, Mar 01 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 11 20:13 EDT 2022. Contains 356067 sequences. (Running on oeis4.)