login
A237838
a(n) = |{0 < k <= n: the number of Sophie Germain primes among 1, ..., k*n is a Sophie Germain prime}|.
2
0, 1, 3, 2, 3, 2, 2, 2, 2, 1, 1, 2, 3, 2, 1, 1, 1, 1, 1, 1, 2, 1, 3, 3, 2, 3, 2, 1, 2, 1, 2, 1, 2, 3, 2, 2, 1, 3, 3, 4, 4, 4, 3, 4, 1, 1, 3, 3, 2, 3, 1, 1, 2, 2, 4, 1, 4, 3, 5, 4, 5, 4, 3, 4, 3, 4, 3, 2, 1, 4, 3, 4, 6, 1, 3, 3, 3, 4, 2, 3
OFFSET
1,3
COMMENTS
Conjecture: a(n) > 0 for all n > 1.
See also A237839 for a similar conjecture involving twin primes.
EXAMPLE
a(20) = 1 since 11 is a Sophie Germain prime, and there are exactly 11 Sophie Germain primes among 1, ..., 6*20 (namely, they are 2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113).
MATHEMATICA
SG[n_]:=PrimeQ[n]&&PrimeQ[2n+1]
sg[n_]:=Sum[If[PrimeQ[2*Prime[k]+1], 1, 0], {k, 1, PrimePi[n]}]
a[n_]:=Sum[If[SG[sg[k*n]], 1, 0], {k, 1, n}]
Table[a[n], {n, 1, 80}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Feb 14 2014
STATUS
approved