login
A355034
a(n) is the least base b >= 2 where the sum of digits of n is a prime number.
2
3, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 3, 8, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 5, 2, 3, 3, 2, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 3, 4, 2, 2, 2, 2, 3, 2, 3, 3, 2, 2, 3, 4, 2, 6, 2, 2, 3, 18, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 3, 6, 2, 2, 2, 2, 3, 2, 3, 4, 2, 2
OFFSET
2,1
COMMENTS
The sequence is well defined:
- a(2) = 3,
- for n >= 3, the expansion of n in base n-1 is "11", with sum of digits 2.
LINKS
FORMULA
a(n) = 2 iff n belongs to A052294.
a(n) <= n-1 for any n >= 3.
EXAMPLE
For n = 16:
- we have the following expansions and sum of digits:
b 16_b Sum of digits in base b
- ------- -----------------------
2 "10000" 1
3 "121" 4
4 "100" 1
5 "31" 4
6 "24" 6
7 "22" 4
8 "20" 2
- so a(16) = 8.
PROG
(PARI) a(n) = for (b=2, oo, if (isprime(sumdigits(n, b)), return (b)))
(Python)
from sympy import isprime
from sympy.ntheory.digits import digits
def a(n):
b = 2
while not isprime(sum(digits(n, b)[1:])): b += 1
return b
print([a(n) for n in range(2, 89)]) # Michael S. Branicky, Jun 16 2022
CROSSREFS
Cf. A052294, A216789, A355035 (corresponding prime numbers).
Sequence in context: A237838 A262880 A249355 * A064654 A162229 A056564
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, Jun 16 2022
STATUS
approved