OFFSET
1,3
COMMENTS
Conjecture: (i) Any positive integer can be written as w*(w+1)/2 + x^3 + b*y^3 + c*z^3 with w > 0 and x,y,z >= 0, provided that (b,c) is among the following ordered pairs: (1,2),(1,3),(1,4),(1,6),(2,2),(2,3),(2,4),(2,5),(2,6),(2,7),(2,20),(2,21),(2,34),(3,3),(3,4),(3,5),(3,6),(4,10).
(ii) For (b,c) = (3,4),(3,6),(4,8), we have {w*(w+1)/2 + 2*x^3 + b*y^3 + c*z^3: w,x,y,z = 0,1,2,...} = {0,1,2,...}.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
EXAMPLE
a(2) = 1 since 2 = 1*2/2 + 0^3 + 1^3 + 2*0^3.
a(34) = 2 since 34 = 4*5/2 + 0^3 + 2^3 + 2*2^3 = 3*4/2 + 1^3 + 3^3 + 2*0^3.
a(41) = 1 since 41 = 3*4/2 + 2^3 + 3^3 + 2*0^3.
a(51) = 1 since 51 = 6*7/2 + 1^3 + 3^3 + 2*1^3.
a(104) = 1 since 104 = 5*6/2 + 2^3 + 3^3 + 2*3^3.
MATHEMATICA
TQ[n_]:=n>0&&IntegerQ[Sqrt[8n+1]]
Do[r=0; Do[If[TQ[n-x^3-y^3-2*z^3], r=r+1], {x, 0, (n/2)^(1/3)}, {y, x, (n-x^3)^(1/3)}, {z, 0, ((n-x^3-y^3)/2)^(1/3)}]; Print[n, " ", r]; Continue, {n, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Oct 04 2015
STATUS
approved