login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262880
Number of ordered ways to write n as w*(w+1)/2 + x^3 + y^3 + 2*z^3 with w > 0, 0 <= x <= y and z >= 0.
3
1, 1, 3, 2, 3, 2, 2, 2, 2, 3, 3, 4, 2, 3, 2, 2, 5, 3, 6, 2, 4, 3, 4, 4, 3, 4, 2, 5, 3, 6, 7, 4, 5, 2, 3, 4, 5, 8, 6, 4, 1, 2, 2, 5, 7, 6, 6, 2, 3, 3, 1, 5, 5, 5, 5, 5, 8, 5, 4, 4, 5, 3, 6, 6, 7, 8, 3, 6, 6, 5, 9, 6, 9, 3, 7, 5, 7, 3, 5, 9, 3, 11, 6, 9, 5, 3, 7, 4, 4, 7, 9, 8, 5, 8, 7, 7, 2, 6, 7, 4
OFFSET
1,3
COMMENTS
Conjecture: (i) Any positive integer can be written as w*(w+1)/2 + x^3 + b*y^3 + c*z^3 with w > 0 and x,y,z >= 0, provided that (b,c) is among the following ordered pairs: (1,2),(1,3),(1,4),(1,6),(2,2),(2,3),(2,4),(2,5),(2,6),(2,7),(2,20),(2,21),(2,34),(3,3),(3,4),(3,5),(3,6),(4,10).
(ii) For (b,c) = (3,4),(3,6),(4,8), we have {w*(w+1)/2 + 2*x^3 + b*y^3 + c*z^3: w,x,y,z = 0,1,2,...} = {0,1,2,...}.
See also A262813, A262824 and A262857 for similar conjectures.
EXAMPLE
a(2) = 1 since 2 = 1*2/2 + 0^3 + 1^3 + 2*0^3.
a(34) = 2 since 34 = 4*5/2 + 0^3 + 2^3 + 2*2^3 = 3*4/2 + 1^3 + 3^3 + 2*0^3.
a(41) = 1 since 41 = 3*4/2 + 2^3 + 3^3 + 2*0^3.
a(51) = 1 since 51 = 6*7/2 + 1^3 + 3^3 + 2*1^3.
a(104) = 1 since 104 = 5*6/2 + 2^3 + 3^3 + 2*3^3.
MATHEMATICA
TQ[n_]:=n>0&&IntegerQ[Sqrt[8n+1]]
Do[r=0; Do[If[TQ[n-x^3-y^3-2*z^3], r=r+1], {x, 0, (n/2)^(1/3)}, {y, x, (n-x^3)^(1/3)}, {z, 0, ((n-x^3-y^3)/2)^(1/3)}]; Print[n, " ", r]; Continue, {n, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Oct 04 2015
STATUS
approved