OFFSET
0,2
COMMENTS
Conjecture: (i) For any m = 3, 4, 5, 6 and n >= 0, there are nonnegative integers w, x, y, z such that n = w^2 + x^3 + 2*y^3 + m*z^3.
(ii) For P(w,x,y,z) = w^2 + x^3 + 2*y^3 + z^4, w^2 + x^3 + 2*y^3 + 3*z^4, w^2 + x^3 + 2*y^3 + 6*z^4, 2*w^2 + x^3 + 4*y^3 + z^4, we have {P(w,x,y,z): w,x,y,z = 0,1,2,...} ={0,1,2,...}.
Conjectures (i) and (ii) verified up to 10^11. - Mauro Fiorentini, Jul 22 2023
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
EXAMPLE
a(0) = 1 since 0 = 0^2 + 0^3 + 2*0^3 + 3*0^3.
a(8) = 2 since 8 = 2^2 + 1^3 + 2*0^3 + 3*1^3 = 0^2 + 2^3 + 2*0^3 + 3*0^3.
a(23) = 1 since 23 = 2^2 + 0^3 + 2*2^3 + 3*1^3.
a(37) = 1 since 37 = 6^2 + 1^3 + 2*0^3 + 3*0^3.
a(72) = 1 since 72 = 8^2 + 2^3 + 2*0^3 + 3*0^3.
MATHEMATICA
SQ[n_]:=IntegerQ[Sqrt[n]]
Do[r=0; Do[If[SQ[n-x^3-2y^3-3z^3], r=r+1], {x, 0, n^(1/3)}, {y, 0, ((n-x^3)/2)^(1/3)}, {z, 0, ((n-x^3-2y^3)/3)^(1/3)}]; Print[n, " ", r]; Continue, {n, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Oct 03 2015
STATUS
approved