OFFSET
0,2
COMMENTS
Conjecture: a(n) > 0 for every nonnegative integer n. In other words, we have {x^3 + 2*y^3 + 3*z^3 + w*(w+1)*(w+2)/6: x,y,z,w = 0,1,2,...} = {0,1,2,...}.
We have verified a(n) > 0 for all n = 0..2*10^6.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
EXAMPLE
a(19) = 1 with 19 = 0^3 + 2*2^3 + 3*1^3 + 0*1*2/6.
a(22) = 1 with 22 = 0^3 + 2*1^3 + 3*0^3 + 4*5*6/6.
a(112) = 1 with 112 = 3^3 + 2*0^3 + 3*3^3 + 2*3*4/6.
a(158) = 1 with 158 = 3^3 + 2*4^3 + 3*1^3 + 0*1*2/6.
a(791) = 1 with 791 = 1^3 + 2*5^3 + 3*5^3 + 9*10*11/6.
a(956) = 1 with 956 = 9^3 + 2*0^3 + 3*4^3 + 5*6*7/6.
a(6363) = 1 with 6363 = 10^3 + 2*13^3 + 3*0^3 + 17*18*19/6.
MATHEMATICA
CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)]; f[w_]:=f[w]=Binomial[w+2, 3];
tab={}; Do[r=0; w=0; Label[bb]; If[f[w]>n, Goto[aa]]; Do[If[CQ[n-f[w]-2y^3-3z^3], r=r+1], {y, 0, ((n-f[w])/2)^(1/3)}, {z, 0, ((n-f[w]-2y^3)/3)^(1/3)}]; w=w+1; Goto[bb]; Label[aa]; tab=Append[tab, r], {n, 0, 100}]; Print[tab]
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Zhi-Wei Sun, May 08 2019
STATUS
approved