login
A307978
Expansion of e.g.f. exp((sinh(x) - sin(x))/2).
6
1, 0, 0, 1, 0, 0, 10, 1, 0, 280, 120, 1, 15400, 17160, 2080, 1401401, 3203200, 1290640, 190623040, 775975201, 712150400, 36321556720, 239000886400, 413465452401, 9339501072000, 91625659447400, 266045692290560, 3216459513124001, 42923384190336000, 193108117771690680
OFFSET
0,7
COMMENTS
Number of partitions of n-set into blocks congruent to 3 mod 4.
LINKS
FORMULA
a(0) = 1; a(n) = Sum_{k=0..floor((n-3)/4)} binomial(n-1,4*k+2) * a(n-4*k-3). - Seiichi Manyama, Mar 17 2022
MATHEMATICA
nmax = 29; CoefficientList[Series[Exp[(Sinh[x] - Sin[x])/2], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = Sum[Boole[MemberQ[{3}, Mod[k, 4]]] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 29}]
PROG
(PARI) my(N=40, x='x+O('x^N)); Vec(serlaplace(exp((sinh(x)-sin(x))/2))) \\ Seiichi Manyama, Mar 17 2022
(PARI) a(n) = if(n==0, 1, sum(k=0, (n-3)\4, binomial(n-1, 4*k+2)*a(n-4*k-3))); \\ Seiichi Manyama, Mar 17 2022
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 08 2019
STATUS
approved