|
|
A013369
|
|
Expansion of e.g.f. exp(sin(x)-sinh(x)).
|
|
3
|
|
|
1, 0, 0, -2, 0, 0, 40, -2, 0, -2240, 480, -2, 246400, -137280, 8320, -44844802, 51251200, -10325120, 12197916160, -24831206402, 11394406400, -4636033573760, 15296025241600, -13230894476802, 2348235343872000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
LINKS
|
Seiichi Manyama, Table of n, a(n) for n = 0..592
|
|
FORMULA
|
a(0) = 1; a(n) = -2 * Sum_{k=0..floor((n-3)/4)} binomial(n-1,4*k+2) * a(n-4*k-3). - Seiichi Manyama, Mar 17 2022
|
|
EXAMPLE
|
1-2/3!*x^3+40/6!*x^6-2/7!*x^7-2240/9!*x^9...
|
|
MATHEMATICA
|
With[{nn=30}, CoefficientList[Series[Exp[Sin[x]-Sinh[x]], {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, May 13 2020 *)
|
|
PROG
|
(PARI) my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(sin(x)-sinh(x)))) \\ Seiichi Manyama, Mar 17 2022
(PARI) a(n) = if(n==0, 1, -2*sum(k=0, (n-3)\4, binomial(n-1, 4*k+2)*a(n-4*k-3))); \\ Seiichi Manyama, Mar 17 2022
|
|
CROSSREFS
|
Cf. A013025, A307978.
Sequence in context: A229685 A230469 A004076 * A013416 A156433 A169771
Adjacent sequences: A013366 A013367 A013368 * A013370 A013371 A013372
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
Patrick Demichel (patrick.demichel(AT)hp.com)
|
|
EXTENSIONS
|
Definition clarified by Harvey P. Dale, May 13 2020
|
|
STATUS
|
approved
|
|
|
|