login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A037819
Number of i such that d(i)>d(i-1), where Sum{d(i)*4^i: i=0,1,....,m} is base 4 representation of n.
2
0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0
OFFSET
1,36
COMMENTS
From Jeffrey Shallit, May 15 2016: (Start)
A "2-regular" sequence, satisfying the recurrence relations:
a(4n+3) = a(n)
a(16n) = a(16n+1) = a(16n+2) = a(4n)
a(16n+5) = a(16n+6) = a(4n+1)
a(16n+8) = a(16n+9) = a(4n+2) + 1
a(16n+10) = a(4n+2)
a(16n+12) = a(16n+13) = a(16n+14) = a(4n+1) + 1
a(64n+4) = a(4n) + 1
a(64n+20) = a(16n+4)
a(64n+36) = a(4n+2) + 2
a(64n+52) = a(n) + 2
(End)
LINKS
MAPLE
A037819 := proc(n)
a := 0 ;
dgs := convert(n, base, 4);
for i from 2 to nops(dgs) do
if op(i, dgs)>op(i-1, dgs) then
a := a+1 ;
end if;
end do:
a ;
end proc: # R. J. Mathar, Oct 15 2015
MATHEMATICA
Table[Count[Differences@ IntegerDigits[n, 4], k_ /; k < 0], {n, 120}] (* Michael De Vlieger, May 15 2016 *)
CROSSREFS
Cf. A037802.
Sequence in context: A325616 A056978 A321761 * A090405 A237837 A365126
KEYWORD
nonn,base
EXTENSIONS
Sign in Name corrected by R. J. Mathar, Oct 15 2015
STATUS
approved