

A237834


Number of partitions of n such that (greatest part)  (least part) >= number of parts.


5



0, 0, 0, 1, 1, 3, 4, 7, 10, 15, 20, 30, 39, 54, 71, 96, 123, 163, 208, 270, 342, 437, 548, 695, 865, 1083, 1341, 1666, 2048, 2527, 3089, 3784, 4604, 5606, 6786, 8222, 9907, 11940, 14331, 17196, 20554, 24563, 29252, 34820, 41327, 49016, 57982, 68545, 80833
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,6


LINKS

R. J. Mathar, Table of n, a(n) for n = 1..95
George E. Andrews, 4Shadows in qSeries and the Kimberling Index, Preprint, May 15, 2016.


FORMULA

A237830(n)+a(n) = A000041(n).  R. J. Mathar, Nov 24 2017


EXAMPLE

a(7) = 4 counts these partitions: 6+1, 5+2, 5+1+1, 4+2+1.


MATHEMATICA

z = 60; q[n_] := q[n] = IntegerPartitions[n]; t[p_] := t[p] = Length[p];
Table[Count[q[n], p_ /; Max[p]  Min[p] < t[p]], {n, z}] (* A237830 *)
Table[Count[q[n], p_ /; Max[p]  Min[p] <= t[p]], {n, z}] (* A237831 *)
Table[Count[q[n], p_ /; Max[p]  Min[p] == t[p]], {n, z}] (* A237832 *)
Table[Count[q[n], p_ /; Max[p]  Min[p] > t[p]], {n, z}] (* A237833 *)
Table[Count[q[n], p_ /; Max[p]  Min[p] >= t[p]], {n, z}] (* A237834 *)


CROSSREFS

Cf. A237830, A237831, A237832, A237833.
Sequence in context: A050572 A249668 A105343 * A147955 A147789 A047625
Adjacent sequences: A237831 A237832 A237833 * A237835 A237836 A237837


KEYWORD

nonn,easy


AUTHOR

Clark Kimberling, Feb 16 2014


STATUS

approved



