login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n such that (greatest part) - (least part) >= number of parts.
5

%I #19 Dec 18 2023 10:10:42

%S 0,0,0,1,1,3,4,7,10,15,20,30,39,54,71,96,123,163,208,270,342,437,548,

%T 695,865,1083,1341,1666,2048,2527,3089,3784,4604,5606,6786,8222,9907,

%U 11940,14331,17196,20554,24563,29252,34820,41327,49016,57982,68545,80833

%N Number of partitions of n such that (greatest part) - (least part) >= number of parts.

%H R. J. Mathar, <a href="/A237834/b237834.txt">Table of n, a(n) for n = 1..95</a>

%H George E. Andrews, <a href="https://georgeandrews1.github.io/pdf/315.pdf">4-Shadows in q-Series and the Kimberling Index</a>, Preprint, May 15, 2016.

%F A237830(n)+a(n) = A000041(n). - _R. J. Mathar_, Nov 24 2017

%e a(7) = 4 counts these partitions: 6+1, 5+2, 5+1+1, 4+2+1.

%t z = 60; q[n_] := q[n] = IntegerPartitions[n]; t[p_] := t[p] = Length[p];

%t Table[Count[q[n], p_ /; Max[p] - Min[p] < t[p]], {n, z}] (* A237830 *)

%t Table[Count[q[n], p_ /; Max[p] - Min[p] <= t[p]], {n, z}] (* A237831 *)

%t Table[Count[q[n], p_ /; Max[p] - Min[p] == t[p]], {n, z}] (* A237832 *)

%t Table[Count[q[n], p_ /; Max[p] - Min[p] > t[p]], {n, z}] (* A237833 *)

%t Table[Count[q[n], p_ /; Max[p] - Min[p] >= t[p]], {n, z}] (* A237834 *)

%t Table[Count[IntegerPartitions[n],_?(#[[1]]-#[[-1]]>=Length[#]&)],{n,50}] (* _Harvey P. Dale_, Jul 21 2023 *)

%Y Cf. A237830, A237831, A237832, A237833.

%K nonn,easy

%O 1,6

%A _Clark Kimberling_, Feb 16 2014