login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105343
Elements of even index in the sequence gives A005893, points on surface of tetrahedron: 2n^2 + 2 for n > 1.
5
1, 3, 4, 7, 10, 15, 20, 27, 34, 43, 52, 63, 74, 87, 100, 115, 130, 147, 164, 183, 202, 223, 244, 267, 290, 315, 340, 367, 394, 423, 452, 483, 514, 547, 580, 615, 650, 687, 724, 763, 802, 843, 884, 927, 970, 1015, 1060, 1107, 1154, 1203, 1252, 1303, 1354, 1407
OFFSET
0,2
COMMENTS
Floretion Algebra Multiplication Program, FAMP Code: 2jesforrokseq[E*F*sig(E)] with E = + .5i' + .5j' + .5'ki' + .5'kj', F the sum of all floretion basis vectors and "sig" the swap-operator. RokType: Y[15] = Y[15] + Math.signum(Y[15])*p (internal program code)
May be seen as the jesforrok-transform of the zero-sequence (A000004) with respect to the floretion given in the program code.
Identical to A267459(n+1) for n > 0. - Guenther Schrack, Jun 01 2018
FORMULA
G.f.: (1 + x - 2*x^2 + x^3 + x^4)/((x+1)*(1-x)^3); a(n+2) - 2*a(n+1) + a(n) = (-1)^(n+1)*A084099(n).
a(n) = (1/4)*(2*n^2 + 9 - (-1)^n ), n>1. - Ralf Stephan, Jun 01 2007
Sum_{n>=0} 1/a(n) = 3/4 + tanh(sqrt(5)*Pi/2)*Pi/(2*sqrt(5)) + coth(Pi)*Pi/4. - Amiram Eldar, Sep 16 2022
EXAMPLE
G.f. = 1 + 3*x + 4*x^2 + 7*x^3 + 10*x^4 + 15*x^5 + 20*x^6 + 27*x^7 + ... - Michael Somos, Jun 26 2018
MATHEMATICA
Join[{1}, LinearRecurrence[{2, 0, -2, 1}, {3, 4, 7, 10}, 60]] (* Jean-François Alcover, Nov 13 2017 *)
PROG
(Magma) [1], [(1/4)*(2*n^2 + 9 - (-1)^n): n in [0..60]]; // Vincenzo Librandi, Oct 10 2011
(PARI) {a(n) = if( n<1, n==0, (2*n^2 + 10)\4)}; /* Michael Somos, Jun 26 2018 */
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Creighton Dement, Apr 30 2005
STATUS
approved