OFFSET
0,2
COMMENTS
Floretion Algebra Multiplication Program, FAMP Code: 2jesforrokseq[E*F*sig(E)] with E = + .5i' + .5j' + .5'ki' + .5'kj', F the sum of all floretion basis vectors and "sig" the swap-operator. RokType: Y[15] = Y[15] + Math.signum(Y[15])*p (internal program code)
May be seen as the jesforrok-transform of the zero-sequence (A000004) with respect to the floretion given in the program code.
Identical to A267459(n+1) for n > 0. - Guenther Schrack, Jun 01 2018
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
FORMULA
G.f.: (1 + x - 2*x^2 + x^3 + x^4)/((x+1)*(1-x)^3); a(n+2) - 2*a(n+1) + a(n) = (-1)^(n+1)*A084099(n).
a(n) = (1/4)*(2*n^2 + 9 - (-1)^n ), n>1. - Ralf Stephan, Jun 01 2007
Sum_{n>=0} 1/a(n) = 3/4 + tanh(sqrt(5)*Pi/2)*Pi/(2*sqrt(5)) + coth(Pi)*Pi/4. - Amiram Eldar, Sep 16 2022
EXAMPLE
G.f. = 1 + 3*x + 4*x^2 + 7*x^3 + 10*x^4 + 15*x^5 + 20*x^6 + 27*x^7 + ... - Michael Somos, Jun 26 2018
MATHEMATICA
Join[{1}, LinearRecurrence[{2, 0, -2, 1}, {3, 4, 7, 10}, 60]] (* Jean-François Alcover, Nov 13 2017 *)
PROG
(Magma) [1], [(1/4)*(2*n^2 + 9 - (-1)^n): n in [0..60]]; // Vincenzo Librandi, Oct 10 2011
(PARI) {a(n) = if( n<1, n==0, (2*n^2 + 10)\4)}; /* Michael Somos, Jun 26 2018 */
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Creighton Dement, Apr 30 2005
STATUS
approved