login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267459
Total number of ON (black) cells after n iterations of the "Rule 133" elementary cellular automaton starting with a single ON (black) cell.
3
1, 2, 3, 4, 7, 10, 15, 20, 27, 34, 43, 52, 63, 74, 87, 100, 115, 130, 147, 164, 183, 202, 223, 244, 267, 290, 315, 340, 367, 394, 423, 452, 483, 514, 547, 580, 615, 650, 687, 724, 763, 802, 843, 884, 927, 970, 1015, 1060, 1107, 1154, 1203, 1252, 1303, 1354
OFFSET
0,2
COMMENTS
Identical to A105343(n-1) for n > 1. - Guenther Schrack, Jun 01 2018
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
Conjectures from Colin Barker, Jan 16 2016 and Apr 17 2019: (Start)
a(n) = (2*n^2 - 4*n + (-1)^n + 11)/4 for n > 0.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n > 4.
G.f.: (1-x^2+2*x^4) / ((1-x)^3*(1+x)).
(End)
MATHEMATICA
rule=133; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) nbc=Table[Total[catri[[k]]], {k, 1, rows}]; (* Number of Black cells in stage n *) Table[Total[Take[nbc, k]], {k, 1, rows}] (* Number of Black cells through stage n *)
CROSSREFS
Cf. A267423.
Sequence in context: A056518 A160644 A347734 * A330357 A145467 A325341
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jan 15 2016
STATUS
approved