login
A267458
Number of ON (black) cells in the n-th iteration of the "Rule 133" elementary cellular automaton starting with a single ON (black) cell.
2
1, 1, 1, 1, 3, 3, 5, 5, 7, 7, 9, 9, 11, 11, 13, 13, 15, 15, 17, 17, 19, 19, 21, 21, 23, 23, 25, 25, 27, 27, 29, 29, 31, 31, 33, 33, 35, 35, 37, 37, 39, 39, 41, 41, 43, 43, 45, 45, 47, 47, 49, 49, 51, 51, 53, 53, 55, 55, 57, 57, 59, 59, 61, 61, 63, 63, 65, 65
OFFSET
0,5
COMMENTS
1,1, followed by A109613 (odd integers repeated).
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
a(n) = A109613(n-2) for n>=2.
Conjectures from Colin Barker, Jan 15 2016 and Apr 19 2019: (Start)
a(n) = (2*n+(-1)^n-3)/2 for n>1.
a(n) = a(n-1)+a(n-2)-a(n-3) for n>4.
G.f.: (1-x^2+2*x^4) / ((1-x)^2*(1+x)).
(End)
MATHEMATICA
rule=133; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) Table[Total[catri[[k]]], {k, 1, rows}] (* Number of Black cells in stage n *)
CROSSREFS
Cf. A267423.
Sequence in context: A293701 A296063 A127630 * A109613 A063196 A351744
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jan 15 2016
STATUS
approved