login
A267423
Triangle read by rows giving successive states of cellular automaton generated by "Rule 133" initiated with a single ON (black) cell.
7
1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0
OFFSET
0
COMMENTS
Row n has length 2n+1.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
EXAMPLE
The first ten rows:
1
0 1 0
0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 1 0 1 0 0
0 0 0 1 0 1 0 1 0 0 0
0 0 1 0 1 0 1 0 1 0 1 0 0
0 0 0 1 0 1 0 1 0 1 0 1 0 0 0
0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0
0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0
MATHEMATICA
rule=133; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) Flatten[catri] (* Triangle Representation of CA *)
CROSSREFS
Sequence in context: A005369 A278169 A262693 * A108340 A341040 A257585
KEYWORD
nonn,tabf,easy
AUTHOR
Robert Price, Jan 14 2016
STATUS
approved