login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A341040
Number T(n,k) of partitions of n into k distinct nonzero squares; triangle T(n,k), n>=0, 0<=k<=A248509(n), read by rows.
20
1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1
OFFSET
0
COMMENTS
T(n,k) is defined for n, k >= 0. The triangle contains only the terms with 0 <= k <= A248509(n). T(n,k) = 0 for k > A248509(n).
LINKS
FORMULA
T(n,k) = [x^n*y^k] Product_{j>=1} (1 + y*x^(j^2)).
T(A000330(n),n) = 1.
Row n = [0] <=> n in { A001422 }.
Sum_{k>=0} 2^k * T(n,k) = A279360(n).
Sum_{k>=0} k * T(n,k) = A281542(n).
Sum_{k>=0} (-1)^k * T(n,k) = A276516(n).
EXAMPLE
T(62,3) = 2 is the first term > 1 and counts partitions [49,9,4] and [36,25,1].
Triangle T(n,k) begins:
1;
0, 1;
0;
0;
0, 1;
0, 0, 1;
0;
0;
0;
0, 1;
0, 0, 1;
0;
0;
0, 0, 1;
0, 0, 0, 1;
...
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+`if`(i^2>n, 0, expand(b(n-i^2, i-1)*x))))
end:
T:= n->(p->seq(coeff(p, x, i), i=0..max(0, degree(p))))(b(n, isqrt(n))):
seq(T(n), n=0..45);
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0,
b[n, i - 1] + If[i^2 > n, 0, Expand[b[n - i^2, i - 1]*x]]]];
T[n_] := CoefficientList[b[n, Floor@Sqrt[n]], x] /. {} -> {0};
T /@ Range[0, 45] // Flatten (* Jean-François Alcover, Feb 15 2021, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,look,tabf
AUTHOR
Alois P. Heinz, Feb 03 2021
STATUS
approved